Notebook Archive
Search
Browse Categories
Academic Articles & Supplements
Books & Supplements
Working Material
Educational Materials
Essays, Posts & Presentations
Browse All
About
Contribute
Filter
All
Academic Articles
Books & Supplements
Educational Materials
Essays & Posts
Working Material
Include legacy content
Apply
Powered by Wolfram Notebook Technology
Academic Articles & Supplements
Deduction rings
Olga Opalikhina
Author
Olga Opalikhina
Title
Deduction rings
Description
The program code implements the RSA algorithm for encrypting a given phrase.
Category
Academic Articles & Supplements
Keywords
Random Prime, Power Mod
URL
http://www.notebookarchive.org/2021-08-1fzxpo8/
DOI
https://notebookarchive.org/2021-08-1fzxpo8
Date Added
2021-08-03
Date Last Modified
2021-08-03
File Size
35.81 kilobytes
Supplements
Rights
CC BY 4.0
Download
Open in Wolfram Cloud
I
n
[
]
:
=
k
e
y
1
=
G
e
n
e
r
a
t
e
A
s
y
m
m
e
t
r
i
c
K
e
y
P
a
i
r
[
]
E
n
c
r
y
p
t
[
k
e
y
1
[
"
P
u
b
l
i
c
K
e
y
"
]
,
G
e
o
N
e
a
r
e
s
t
[
E
n
t
i
t
y
[
"
C
o
u
n
t
r
y
"
]
,
H
e
r
e
]
]
C
o
u
n
t
r
y
=
D
e
c
r
y
p
t
[
k
e
y
1
[
"
P
r
i
v
a
t
e
K
e
y
"
]
,
%
]
f
o
n
t
=
"
C
o
u
n
t
r
y
R
S
A
"
;
{
p
,
q
}
=
R
a
n
d
o
m
P
r
i
m
e
[
2
5
6
,
2
]
n
=
p
*
q
k
=
(
p
-
1
)
*
(
q
-
1
)
;
g
=
R
a
n
d
o
m
P
r
i
m
e
[
{
3
,
k
-
1
}
]
d
=
P
o
w
e
r
M
o
d
[
g
,
-
1
,
k
]
T
o
C
h
a
r
a
c
t
e
r
C
o
d
e
@
f
o
n
t
P
o
w
e
r
M
o
d
[
T
o
C
h
a
r
a
c
t
e
r
C
o
d
e
@
f
o
n
t
,
g
,
n
]
P
o
w
e
r
M
o
d
[
%
,
d
,
n
]
F
r
o
m
C
h
a
r
a
c
t
e
r
C
o
d
e
@
%
O
u
t
[
]
=
P
r
i
v
a
t
e
K
e
y
P
r
i
v
a
t
e
K
e
y
t
y
p
e
:
R
S
A
p
u
b
l
i
c
m
o
d
u
l
u
s
s
i
z
e
:
2
0
4
8
b
i
t
s
p
r
i
v
a
t
e
e
x
p
o
n
e
n
t
s
i
z
e
:
2
0
4
8
b
i
t
s
,
P
u
b
l
i
c
K
e
y
P
u
b
l
i
c
K
e
y
t
y
p
e
:
R
S
A
p
u
b
l
i
c
m
o
d
u
l
u
s
s
i
z
e
:
2
0
4
8
b
i
t
s
O
u
t
[
]
=
E
n
c
r
y
p
t
e
d
O
b
j
e
c
t
d
a
t
a
l
e
n
g
t
h
:
2
5
6
b
y
t
e
s
o
r
i
g
i
n
a
l
f
o
r
m
:
E
x
p
r
e
s
s
i
o
n
O
u
t
[
]
=
S
w
i
t
z
e
r
l
a
n
d
O
u
t
[
]
=
{
5
,
2
9
}
O
u
t
[
]
=
1
4
5
O
u
t
[
]
=
8
3
O
u
t
[
]
=
2
7
O
u
t
[
]
=
{
6
7
,
1
1
1
,
1
1
7
,
1
1
0
,
1
1
6
,
1
1
4
,
1
2
1
,
3
2
,
8
2
,
8
3
,
6
5
}
O
u
t
[
]
=
{
1
3
,
8
1
,
8
8
,
1
4
0
,
1
1
6
,
1
4
,
6
,
6
8
,
2
3
,
7
,
2
5
}
O
u
t
[
]
=
{
6
7
,
1
1
1
,
1
1
7
,
1
1
0
,
1
1
6
,
1
1
4
,
1
2
1
,
3
2
,
8
2
,
8
3
,
6
5
}
O
u
t
[
]
=
C
o
u
n
t
r
y
R
S
A
Cite this as:
Olga Opalikhina
, "Deduction rings" from the Notebook Archive (2021),
https://notebookarchive.org/2021-08-1fzxpo8
Download