Discrete Gompertz Scheme and Bootstrap Analysis for Early Monitoring of the COVID-19 Pandemic in Cuba
Author
María Teresa Perez Maldonado, Julian Bravo Castillero, Ricardo Mansilla, Rogelio Oscar Caballero Perez
Title
Discrete Gompertz Scheme and Bootstrap Analysis for Early Monitoring of the COVID-19 Pandemic in Cuba
Description
The discrete version of the Gompertz model is used for early monitoring and short-term forecasting of the spread of an epidemic in a region. Real data of COVID-19 infection in Cuba is used. The proposed methodology was implemented for the first thirty-five days and was used to predict accurately the data reported for the following twenty days.
Category
Academic Articles & Supplements
Keywords
COVID-19, Discrete Gompertz Model, Bootstraping
URL
http://www.notebookarchive.org/2022-05-1fu9m2t/
DOI
https://notebookarchive.org/2022-05-1fu9m2t
Date Added
2022-05-03
Date Last Modified
2022-05-03
File Size
27.07 kilobytes
Supplements
Rights
CC BY 4.0



This file contains supplementary data for María T. Pérez-Maldonado, Julián Bravo-Castillero, Ricardo Mansilla and Rogelio O. Caballero-Pérez, “Discrete Gompertz and Generalized Logistic Models for early monitoring of the COVID-19 pandemic in Cuba.” https://arxiv.org/abs/2203.02729.
Discrete Gompertz Scheme and Bootstrap Analysis for Early Monitoring of the COVID-19 Pandemic in Cuba
Discrete Gompertz Scheme and Bootstrap Analysis for Early Monitoring of the COVID-19 Pandemic in Cuba
María Teresa Pérez-Maldonado1 https://orcid.org/0000-0003-3658-3861
Julián Bravo-Castillero2 https://orcid.org/0000-0002-7499-3821
Ricardo Mansilla3 https://orcid.org/0000-0002-1248-0959
Rogelio Oscar Caballero-Pérez4 https://orcid.org/0000-0002-5474-174X
1 Universidad de La Habana, Facultad de Física. Departamento de Física Teórica
2 Universidad Nacional Autónoma de México, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Académica del IIMAS en el Estado de Yucatán
3 Universidad Nacional Autónoma de México, Centro Peninsular en Humanidades y Ciencias Sociales
4 Universidad Nacional Autónoma de México, ENES Mérida, Universidad Politécnica de Yucatán
Julián Bravo-Castillero2 https://orcid.org/0000-0002-7499-3821
Ricardo Mansilla3 https://orcid.org/0000-0002-1248-0959
Rogelio Oscar Caballero-Pérez4 https://orcid.org/0000-0002-5474-174X
1 Universidad de La Habana, Facultad de Física. Departamento de Física Teórica
2 Universidad Nacional Autónoma de México, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Académica del IIMAS en el Estado de Yucatán
3 Universidad Nacional Autónoma de México, Centro Peninsular en Humanidades y Ciencias Sociales
4 Universidad Nacional Autónoma de México, ENES Mérida, Universidad Politécnica de Yucatán
Abstract
The COVID-19 pandemic has motivated a resurgence in the use of phenomenological growth models for predicting the early dynamics of infectious diseases. These models assume that time is a continuous variable, whereas in the present contribution the discrete version of the Gompertz model is used for early monitoring and short-term forecasting of the spread of an epidemic in a region. The time-continuous models are represented mathematically by first-order differential equations, while their discrete versions are represented by first-order difference equations that involve parameters that should be estimated prior to forecasting. The methodology for estimating such parameters is based on a bootstrap technique. Real data of COVID-19 infection in Cuba is used. The proposed methodology was implemented for the first thirty-five days and was used to predict accurately the data reported for the following twenty days.
(*Initialdata*)l={3,3,4,4,4,5,7,11,16,23,33,38,46,55,65,78,117,137,168,184,210,231,267,286,318,348,394,455,513,562,618,667,724,764,812,860,921,984,1033,1085,1135,1187,1233,1283,1335,1367,1387,1435,1465,1499,1535,1609,1647,1666,1683,1701,1727,1739,1752,1764,1781};(*Step1.Window-averaging*)lp=Table[N[Sum[l[[k]]/7,{k,i-3,i+3}]],{i,4,58}];(*Step2.Calibrationperiodandlistofpairs*)Ene=35;lpr=Take[lp,Ene];prs=Table[{lpr[[n]],lpr[[n+1]]},{n,1,Ene-1}];(*Step3.FittingtoGompertzfunction*)func=NonlinearModelFit[prs,x(A-gammaLog[x]),{gamma,A},x];A1=A/.func["BestFitParameters"];gamma1=gamma/.func["BestFitParameters"]Ka=Exp[(A1-1)/gamma1](*Step4.Predictedtimeseries*)sol1=RecurrenceTable[{aa[n+1]aa[n](1+gamma1Log[Ka/aa[n]]),aa[1]lpr[[1]]},aa,{n,55}];Show[ListPlot[sol1,PlotStyleRed,AxesLabel{"n (day number)",""}],ListPlot[lp],PlotRange->All](*Bootstrap*)M=100000;(*Step5.Errorsandgenerationofreplicas*)muu=Table[sol1[[n+1]]-sol1[[n]],{n,1,54}];realiz=Table[Drop[sol1,1]+Table[RandomVariate[PoissonDistribution[muu[[n]]]],{n,1,54}],{m,1,M}];A2=List[];gamma2=List[];(*Step6.FittingtoGompertzfunction.Meanandstandarddeviations*)Do[prsn=Table[{realiz[[m]][[n]],realiz[[m]][[n+1]]},{n,1,Ene-1}];funcn=NonlinearModelFit[prsn,x(Be-deltaLog[x]),{delta,Be},x];AppendTo[A2,Be/.funcn["BestFitParameters"]];AppendTo[gamma2,delta/.funcn["BestFitParameters"]],{m,1,M}]A2=Exp[(A2-1)/gamma2];(*Step7.Meansandstandarddeviations*)Mean[A2]StandardDeviation[A2]Mean[gamma2]StandardDeviation[gamma2](*Graphicsandhistograms*)FactorConfidence=1.96;Klow=Mean[A2]-FactorConfidence*StandardDeviation[A2];Khigh=Mean[A2]+FactorConfidence*StandardDeviation[A2];gammalow=Mean[gamma2]-FactorConfidence*StandardDeviation[gamma2];gammahigh=Mean[gamma2]+FactorConfidence*StandardDeviation[gamma2];sollowgamma=RecurrenceTable[{aa[n+1]aa[n](1+gammalowLog[Mean[A2]/aa[n]]),aa[1]lpr[[1]]},aa,{n,55}];solhighgamma=RecurrenceTable[{aa[n+1]aa[n](1+gammahighLog[Mean[A2]/aa[n]]),aa[1]lpr[[1]]},aa,{n,55}];ListPlot[{sollowgamma,solhighgamma,sol1,lp},PlotLegendsPlaced[{None,None,"Non-Linear Model Fit","Window-averaged data"},{Left,Top}],Filling{1{2}},FillingStyleGray,PlotStyle{None,None,Black,Black},Joined{True,True,True,False},Frame{True,True,False,False},FrameLabel{"n",""}]Histogram[gamma2,35,Frame{True,True,False,False},FrameLabel{"γ",None}]sollowA=RecurrenceTable[{aa[n+1]aa[n](1+Mean[gamma2]Log[Klow/aa[n]]),aa[1]lpr[[1]]},aa,{n,55}];solhighA=RecurrenceTable[{aa[n+1]aa[n](1+Mean[gamma2]Log[Khigh/aa[n]]),aa[1]lpr[[1]]},aa,{n,55}];ListPlot[{sollowA,solhighA,sol1,lp},PlotLegendsPlaced[{None,None,"Non-Linear Model Fit","Window-averaged data"},{Left,Top}],Filling{1{2}},FillingStyleGray,PlotStyle{None,None,Black,Black},Joined{True,True,True,False},Frame{True,True,False,False},FrameLabel{"n",""}]Histogram[A2,35,Frame{True,True,False,False},FrameLabel{"K",None}]
C
n
C
n
C
n
0.0594009
2446.64


Cite this as: María Teresa Perez Maldonado, Julian Bravo Castillero, Ricardo Mansilla, Rogelio Oscar Caballero Perez, "Discrete Gompertz Scheme and Bootstrap Analysis for Early Monitoring of the COVID-19 Pandemic in Cuba" from the Notebook Archive (2022), https://notebookarchive.org/2022-05-1fu9m2t

Download

