Favard Constants
Author
Eric W. Weisstein
Title
Favard Constants
Description
Let T_n(x) be an arbitrary trigonometric polynomial T_n(x)=1/2a_0+{sum_(k=1)^n[a_kcos(kx)+b_ksin(kx)]} (1) with real coefficients, let f be a function that is integrable over the interval [-pi,pi], and let the rth derivative of f be bounded in [-1,1]. Then there exists a polynomial T_n(x) for which |f(x)-T_n(x)|<=(K_r)/((n+1)^r), (2) for all x in [-pi,pi], where K_r is the smallest constant possible, known as the rth Favard constant. K_r can be given explicitly by the sum ...
Category
Educational Materials
Keywords
URL
http://www.notebookarchive.org/2019-07-0z3ezz9/
DOI
https://notebookarchive.org/2019-07-0z3ezz9
Date Added
2019-07-02
Date Last Modified
2019-07-02
File Size
23.36 kilobytes
Supplements
Rights
Redistribution rights reserved



Favard Constants
Favard Constants
Author
Author
Eric W. Weisstein
August 2, 2017
August 2, 2017
©2017 Wolfram Research, Inc. except for portions noted otherwise
Sum
Sum
4π∞∑k=0r+1k(-1)2k+11-r2Φr+1(-1),r+1,12
4
π
∞
∑
k=0
r+1
k
(-1)
2k+1
1-r
2
Φ
r+1
(-1)
1
2
V6
V6
4
π
r+1
(-1)^k
2k+1
1-r
2
1+r
(-1)
1
2
π
V7
V7
4
π
r+1
(-1)^k
2k+1
1-r
2
1+r
(-1)
1
2
π
V11.2
V11.2
4
π
r+1
(-1)^k
2k+1
1-r
2
1+r
(-1)
1
2
π
1-r
2
1+r
(-1)
1
2
π
1
FullSimplifyLerchPhi,1+r,,Mod[r,2]#&/@{0,1}
1-r
2
1+r
(-1)
1
2
π
LerchPhi,1+r,,LerchPhi1,1+r,
1-r
2
1+r
(-1)
1
2
π
1-r
2
1
2
π
FunctionExpandLerchPhi,1+r,,Mod[r,2]#&/@{0,1}
1-r
2
1+r
(-1)
1
2
π
LerchPhi,1+r,,LerchPhi,1+r,
1-r
2
1+r
(-1)
1
2
π
1-r
2
1+r
(-1)
1
2
π
FullSimplify4LerchPhi,n,-DirichletLambda[n],Mod[n,2]0&&n>0
n
(2π)
n
(-1)
1
2
4
n
π
-n
π
2-n
2
1
2
Table-4Zeta[n]+LerchPhi1,n,+Zeta[n],{n,2,10,2}
-n
π
2-n
2
1
2
{0,0,0,0,0}
FullSimplify4LerchPhi,n,-DirichletBeta[n],Mod[n,2]1
n
(2π)
n
(-1)
1
2
4
n
π
0
Values
Values
FullSimplifyLerchPhi#,1+r,&/@{-1,1}
1-r
2
1
2
π
Zeta1+r,-Zeta1+r,,LerchPhi1,1+r,
-r
4
1
4
3
4
π
1-r
2
1
2
π
TableLerchPhi,1+r,π,{r,0,5}
1-r
2
1+r
(-1)
1
2
1,,,,,
π
2
2
π
8
3
π
24
5
4
π
384
5
π
240
Table4LerchPhi,n,,{n,21}
n
(2π)
n
(-1)
1
2
1,,,,,,,,,,,,,,,,,,,,
1
2
1
8
1
24
5
384
1
240
61
46080
17
40320
277
2064384
31
725760
50521
3715891200
691
159667200
540553
392398110720
5461
12454041600
199360981
1428329123020800
929569
20922789888000
3878302429
274239191619993600
3202291
711374856192000
2404879675441
1678343852714360832000
221930581
486580401635328000
14814847529501
102043306245033138585600
TableIf[Mod[n,2]0,DirichletLambda,DirichletBeta][n],{n,21}
4
n
π
1,,,,,,,,,,,,,,,,,,,,
1
2
1
8
1
24
5
384
1
240
61
46080
17
40320
277
2064384
31
725760
50521
3715891200
691
159667200
540553
392398110720
5461
12454041600
199360981
1428329123020800
929569
20922789888000
3878302429
274239191619993600
3202291
711374856192000
2404879675441
1678343852714360832000
221930581
486580401635328000
14814847529501
102043306245033138585600


Cite this as: Eric W. Weisstein, "Favard Constants" from the Notebook Archive (2017), https://notebookarchive.org/2019-07-0z3ezz9

Download

