Alternating Group Graph
Author
Eric W. Weisstein
Title
Alternating Group Graph
Description
The alternating group graph AG_n is the undirected Cayley graph of the set of 2(n-2) generators of the alternating group A_n given by g_3^-, g_3^+, g_4^-, g_4^+, ..., g_n^-, and g_n^+, where g_i^- = (1,i,2) (1) g_i^+ = (1,2,i) (2) in permutation cycle notation (Jwo et al. 1993). AG_n is a special case of the arrangement graph A_(n,k) given by A_(n,n-2). This and other special cases are summarized in the following table and illustrated above. n graph 2 singleton graph K_1 3 triangle graph...
Category
Educational Materials
Keywords
URL
http://www.notebookarchive.org/2019-07-0z3qvqa/
DOI
https://notebookarchive.org/2019-07-0z3qvqa
Date Added
2019-07-02
Date Last Modified
2019-07-02
File Size
0.71 megabytes
Supplements
Rights
Redistribution rights reserved



Alternating Group Graph
Alternating Group Graph
Author
Author
Eric W. Weisstein
July 30, 2018
July 30, 2018
This notebook downloaded from http://mathworld.wolfram.com/notebooks/GraphTheory/AlternatingGroupGraph.nb.
For more information, see Eric's MathWorld entry http://mathworld.wolfram.com/AlternatingGroupGraph.html.
©2018 Wolfram Research, Inc. except for portions noted otherwise
Figure
Figure
gs=SortBy[{("AlternatingGroup"/.GraphData[#,"NotationRules"]),#}&/@GraphData["AlternatingGroup"],First]
{{2,SingletonGraph},{3,TriangleGraph},{4,CuboctahedralGraph},{5,{Arrangement,{5,3}}},{6,{Arrangement,{6,4}}}}
nicegs=Select[gs,GraphData[#[[2]],"Embeddings"]=!={}&]
{{2,SingletonGraph},{3,TriangleGraph},{4,CuboctahedralGraph}}
GraphicsGrid[Partition[Show[GraphData[#[[2]]]/.g_System`GraphSetProperty[g,{VertexSizeIf[#[[1]]2,.01,{"Scaled",.04}],System`VertexStyleRed,System`EdgeStyleBlack}],MethodNone,BaseStyleItalic,PlotLabelTextCell[Style[Column[{Subscript["AG",Style[#[[1]],Plain]],GraphData[#[[2]],"Name"]},AlignmentCenter],FontFamily"Times"]]]&/@nicegs,UpTo[3]],ImageSize450]
Special Cases
Special Cases
In[]:=
Sort[("AlternatingGroup"/.GraphData[#,"NotationRules"])#&/@GraphData["AlternatingGroup"]]
Out[]=
{2SingletonGraph,3TriangleGraph,4CuboctahedralGraph,5{Arrangement,{5,3}},6{Arrangement,{6,4}}}
In[]:=
TextGrid[DeleteCases[Table[{n,RecognizeGraph[AlternatingGroupGraph[n]]},{n,8}],{_,{}}],DividersAll]
Out[]=
1 | SingletonGraph |
2 | SingletonGraph |
3 | TriangleGraph |
4 | CuboctahedralGraph |
5 | {Arrangement,{5,3}} |
6 | {Arrangement,{6,4}} |
Properties
Properties
Acyclic
Acyclic
AdjacencyMatrixCount
AdjacencyMatrixCount
Anarboricity
Anarboricity
Arboricity
Arboricity
ArcTransitive
ArcTransitive
ArcTransitivity
ArcTransitivity
AutomorphismCount
AutomorphismCount
BalabanIndex
BalabanIndex
seq=Table[GraphData[{"AlternatingGroupGraph",n},"BalabanIndex"],{n,2,6}]
FindSequenceFunction[seq,n]
Bandwidth
Bandwidth
seq=Table[GraphData[{"AlternatingGroupGraph",n},"Bandwidth"],{n,2,6}]
BridgeCount
BridgeCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"BridgeCount"],{n,2,6}]
BurningNumber
BurningNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"BurningNumber"],{n,2,6}]
CharacteristicPolynomial
CharacteristicPolynomial
Factor@(poly=Table[GraphData[{"AlternatingGroupGraph",n},"CharacteristicPolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x])//Column
In[]:=
coef=Factor/@FindLinearRecurrence[poly]
In[]:=
CoefficientList[Take[poly,10],x]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
In[]:=
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>0]
ChordCount
ChordCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"ChordCount"],{n,2,6}]
Table[GraphData[{"AlternatingGroupGraph",n},"EdgeCount"],{n,2,6}]
Table[(n-1)n!/2,{n,2,6}]
Chordless
Chordless
seq=Table[GraphData[{"AlternatingGroupGraph",n},"Chordless"],{n,2,6}]
ChordlessCycleCount
ChordlessCycleCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"ChordlessCycleCount"],{n,2,6}]
In[]:=
FindSequenceFunction[Rest@seq,n-3]//Factor
Chords
Chords
Length/@Table[GraphData[{"AlternatingGroupGraph",n},"Chords"],{n,2,6}]
ChromaticInvariant
ChromaticInvariant
seq=Table[GraphData[{"AlternatingGroupGraph",n},"ChromaticInvariant"],{n,2,6}]
FindSequenceFunction[DeleteMissing@seq,n]
ChromaticNumber
ChromaticNumber
In[]:=
seq=Table[GraphData[{"AlternatingGroupGraph",n},"ChromaticNumber"],{n,2,6}]
Out[]=
{1,3,3,3,3}
ChromaticPolynomial
ChromaticPolynomial
Factor@(poly=Table[GraphData[{"AlternatingGroupGraph",n},"ChromaticPolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x])//Column
In[]:=
coef=Factor/@FindLinearRecurrence[DeleteMissing@poly]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
Subtract@@@Table[{GraphData[{"AlternatingGroupGraph",n},"ChromaticPolynomial"][x],x(-++((-3+x)+)x)},{n,3,13}]//Expand
n
(-1)
n
(-3+x)
n
(-2+x)
n
(-1)
n
(-3+x)
In[]:=
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>0]
Circumference
Circumference
seq=Table[GraphData[{"AlternatingGroupGraph",n},"Circumference"],{n,2,6}]
In[]:=
FindSequenceFunction[Drop[seq,2],n-2]
In[]:=
Table[n!,{n,3,6}]
Classes
Classes
Intersection@@(GraphData[#,"Classes"]&/@GraphData["AlternatingGroupGraph"])
{"Bicolorable","Bipartite","AlternatingGroupGraph","Class1","Connected","Perfect","Regular","Simple","Traceable","TriangleFree","VertexTransitive","WeaklyPerfect"}
CliqueCount
CliqueCount
A139149
seq=Table[GraphData[{"AlternatingGroupGraph",n},"CliqueCount"],{n,2,6}]
In[]:=
FindSequenceFunction[seq,n]
FindGeneratingFunction[seq,x]
Table[((n+1)!+2)/2,{n,2,6}]
CliqueCoveringNumber
CliqueCoveringNumber
Probably A001710
seq=Table[GraphData[{"AlternatingGroupGraph",n},"CliqueCoveringNumber"],{n,2,6}]
In[]:=
Numerator[Range[6]!/2]
FullSimplify[FindSequenceFunction[DeleteMissing@seq,n],n>2]
Table[Ceiling[n/2],{n,2,6}]
CliquePolynomial
CliquePolynomial
(poly=Factor@Table[GraphData[{"AlternatingGroupGraph",n},"CliquePolynomial"][x],{n,k0=1,kmax=6}])//Column
CliqueNumber
CliqueNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"CliqueNumber"],{n,2,6}]
ComplementOddChordlessCycleCount
ComplementOddChordlessCycleCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"ComplementOddChordlessCycleCount"],{n,2,6}]
ConnectedDominatingSetCount
ConnectedDominatingSetCount
A317481
seq=Table[GraphData[{"AlternatingGroupGraph",n},"ConnectedDominatingSetCount"],{n,2,6}]
FindSequenceFunction[DeleteMissing@seq,n]//FullSimplify
ConnectedDominationNumber
ConnectedDominationNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"ConnectedDominationNumber"],{n,2,6}]
ConnectedDominationPolynomial
ConnectedDominationPolynomial
(poly=Table[GraphData[{"AlternatingGroupGraph",n},"ConnectedDominationPolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x])//Factor//Column
In[]:=
coef=Factor/@FindLinearRecurrence[DeleteMissing[poly]]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
Subtract@@@Table[{GraphData[{"AlternatingGroupGraph",n},"ConnectedDominationPolynomial"][x],n+n++2x(-1+)+(-1+)},{n,3,13}]//Expand
-2+n
x
-1+n
x
n
x
n
(1+x)
2
x
n
(1+x)
ConnectedInducedSubgraphCount
ConnectedInducedSubgraphCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"ConnectedInducedSubgraphCount"],{n,2,6}]
FindSequenceFunction[seq,n]//FullSimplify
ConnectedInducedSubgraphPolynomial
ConnectedInducedSubgraphPolynomial
(poly=Factor@Table[GraphData[{"AlternatingGroupGraph",n},"ConnectedInducedSubgraphPolynomial"],{n,k0=1,6}]/.f_Functionf[x])//Factor//Column
In[]:=
coef=Factor/@FindLinearRecurrence[DeleteMissing[poly]]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
gf=FindGeneratingFunction[poly,z]
k0
z
FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>0]
FullSimplify[%-poly]
CrossingNumber
CrossingNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"CrossingNumber"],{n,2,6}]
Table[GraphData[{"AlternatingGroupGraph",n},"Planar"],{n,2,6}]
CycleCount
CycleCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"CycleCount"],{n,2,6}]
FindSequenceFunction[seq,n]//Factor
CyclePolynomial
CyclePolynomial
Factor@(poly=Table[GraphData[{"AlternatingGroupGraph",n},"CyclePolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x])//Column
In[]:=
coef=Factor/@FindLinearRecurrence[poly]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
In[]:=
gf=FindGeneratingFunction[poly,z]
k0
z
FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>0]
Cyclic
Cyclic
Table[GraphData[{"AlternatingGroupGraph",n},"Cyclic"],{n,2,6}]
CyclomaticNumber
CyclomaticNumber
A317483
seq=Table[GraphData[{"AlternatingGroupGraph",n},"CyclomaticNumber"],{n,2,6}]
FindSequenceFunction[seq,n]//FullSimplify
DetourIndex
DetourIndex
A296782
seq=Table[GraphData[{"AlternatingGroupGraph",n},"DetourIndex"],{n,2,6}]
FindSequenceFunction[seq,n]//Factor
DetourPolynomial
DetourPolynomial
(poly=Factor@Table[GraphData[{"AlternatingGroupGraph",n},"DetourPolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x])//Column
Diameter
Diameter
seq=Table[GraphData[{"AlternatingGroupGraph",n},"Diameter"],{n,2,6}]
In[]:=
FindSequenceFunction[seq,n]
DistancePolynomial
DistancePolynomial
(poly=Factor@Table[GraphData[{"AlternatingGroupGraph",n},"DistancePolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x])//Column
In[]:=
coef=Factor/@FindLinearRecurrence[poly]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
In[]:=
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>0]
DistinguishingNumber
DistinguishingNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"DistinguishingNumber"],{n,2,6}]
DomaticNumber
DomaticNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"DomaticNumber"],{n,2,6}]
DominationNumber
DominationNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"DominationNumber"],{n,2,6}]
DominationPolynomial
DominationPolynomial
(poly=Factor[Table[GraphData[{"AlternatingGroupGraph",n},"DominationPolynomial"],{n,k0=1,kmax=6}]/.f_Function:>f[x]])//Column
In[]:=
CoefficientList[Take[poly,5],x]
In[]:=
coef=Factor/@FindLinearRecurrence[DeleteMissing@poly]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
Simplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>2]
In[]:=
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>0]
DominatingSetCount
DominatingSetCount
A317484
seq=Table[GraphData[{"AlternatingGroupGraph",n},"DominatingSetCount"],{n,2,6}]
FindSequenceFunction[DeleteMissing@seq,n]//FullSimplify
In[]:=
gf=FindGeneratingFunction[DeleteMissing@seq,x]
3
x
In[]:=
soln=FullSimplify[SeriesCoefficient[gf,{x,0,n}],n>2]
Table[3-2+RootSum[-1-#1-+&,#^n&],{n,2,6}]
n
2
2
#1
3
#1
EdgeChromaticNumber
EdgeChromaticNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"EdgeChromaticNumber"],{n,2,6}]
EdgeConnectivity
EdgeConnectivity
Table[GraphData[{"AlternatingGroupGraph",n},"EdgeConnectivity"],{n,2,6}]
EdgeCount
EdgeCount
EdgeCoverCount
EdgeCoverCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"EdgeCoverCount"],{n,2,6}]
In[]:=
FullSimplify[FindSequenceFunction[DeleteMissing@seq,n],n>0&&n∈Integers]
In[]:=
coef=FindLinearRecurrence[DeleteMissing@seq]
In[]:=
Length@coef
In[]:=
Take[seq,6]
In[]:=
LinearRecurrence[{11,-24,-21,33,34,8},{2,34,341,2902,23092,178393},20]
In[]:=
gf=xFindGeneratingFunction[DeleteMissing@seq,x]
In[]:=
FullSimplify[SeriesCoefficient[gf,{x,0,n}],n>0&&n∈Integers]
In[]:=
CoefficientListSeries,{x,0,20},x
-2-12x-15-9-2
2
x
3
x
4
x
-1+11x-24-21+33+34+8
2
x
3
x
4
x
5
x
6
x
EdgeCoverNumber
EdgeCoverNumber
A001710
seq=Table[GraphData[{"AlternatingGroupGraph",n},"EdgeCoverNumber"],{n,2,6}]
FullSimplify[FindSequenceFunction[seq,n],n∈Integers]
In[]:=
Range[6]!/2
EdgeCoverPolynomial
EdgeCoverPolynomial
(poly=Factor[Table[GraphData[{"AlternatingGroupGraph",n},"EdgeCoverPolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x]])//Column
In[]:=
CoefficientList[Take[poly,4],x]//Column
In[]:=
FindLinearRecurrence[DeleteMissing@Drop[poly,1]]//Head
coef=Factor/@FindPolynomialRecurrence[poly,6]
ToPolynomialRecurrence[p,x,n,coef]
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
TeXForm[%]
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>0]
Table[nx(3x+2)-2x^2+1,{n,10}]
FullSimplify[%-poly]
EulerianCycleCount
EulerianCycleCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"EulerianCycleCount"],{n,2,6}]
FaceCount
FaceCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"FaceCount"],{n,2,6}]
FindSequenceFunction[seq,n]
FlowPolynomial
FlowPolynomial
(poly=Factor@Table[GraphData[{"AlternatingGroupGraph",n},"FlowPolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x])//Column
In[]:=
coef=Factor/@FindLinearRecurrence[DeleteMissing@poly]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>0]
FractionalChromaticNumber
FractionalChromaticNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"FractionalChromaticNumber"],{n,2,6}]
FullSimplify[FindSequenceFunction[seq,n],n∈Integers]
FractionalCliqueNumber
FractionalCliqueNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"FractionalCliqueNumber"],{n,2,6}]
FractionalEdgeChromaticNumber
FractionalEdgeChromaticNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"FractionalEdgeChromaticNumber"],{n,2,6}]
Girth
Girth
seq=Table[GraphData[{"AlternatingGroupGraph",n},"Girth"],{n,2,6}]
HamiltonDecompositionCount
HamiltonDecompositionCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"HamiltonDecompositionCount"],{n,2,6}]
Hamiltonian
Hamiltonian
Table[GraphData[{"AlternatingGroupGraph",n},"Hamiltonian"],{n,2,6}]
HamiltonianCycleCount
HamiltonianCycleCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"HamiltonianCycleCount"],{n,2,6}]
FindSequenceFunction[seq,n]//Factor
HamiltonianNumber
HamiltonianNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"HamiltonianNumber"],{n,2,6}]
FindSequenceFunction[seq,n]
HamiltonianPathCount
HamiltonianPathCount
A317485
seq=Table[GraphData[{"AlternatingGroupGraph",n},"HamiltonianPathCount"],{n,2,6}]
In[]:=
FindSequenceFunction[Rest@seq,n-3]//Factor
HamiltonianWalkCount
HamiltonianWalkCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"HamiltonianWalkCount"],{n,2,6}]
FindSequenceFunction[DeleteMissing@seq,n]//Factor
HararyIndex
HararyIndex
seq=Table[GraphData[{"AlternatingGroupGraph",n},"HararyIndex"],{n,2,6}]
In[]:=
FindSequenceFunction[seq,n]//Factor
HexagonCount
HexagonCount
A317486
seq=Table[GraphData[{"AlternatingGroupGraph",n},"HexagonCount"],{n,2,6}]
(seq=Table[CycleCount[AlternatingGroupGraph[n],6],{n,8}])//Timing
(seq=Table[CycleCount[AlternatingGroupGraph[n],6],{n,9}])//Timing
In[]:=
FindLinearRecurrence[Drop[seq,2]]
In[]:=
FindGeneratingFunction[seq,x]
IdiosyncraticPolynomial
IdiosyncraticPolynomial
(poly=Factor@Table[GraphData[{"AlternatingGroupGraph",n},"IdiosyncraticPolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x,y])//Column
In[]:=
coef=Factor/@FindLinearRecurrence[poly]
ToPolynomialRecurrence[p,x,n,coef]
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
TeXForm[%]
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>0]
Table[nx(3x+2)-2x^2+1,{n,10}]
FullSimplify[%-poly]
IndependenceNumber
IndependenceNumber
In[]:=
seq=Table[GraphData[{"AlternatingGroupGraph",n},"IndependenceNumber"],{n,2,6}]
Out[]=
{1,1,4,20,120}
In[]:=
seq=Table[GraphData[{"AlternatingGroupGraph",n},"V"],{n,2,6}]
Out[]=
{1,3,12,60,360}
In[]:=
Table[Piecewise[{{1,n2||n3}},n!/6],{n,2,10}]
Out[]=
{1,1,4,20,120,840,6720,60480,604800}
(byblis V12.0.0 (2)) In[10]:=
Do[Print[{{"AlternatingGroupGraph",n},MemoryConstrained[First@FindIndependentVertexSet[AlternatingGroupGraph[n]],100*^9]//Timing}],{n,7}]
{{AlternatingGroup,1},{0.,{1}}}
{{AlternatingGroup,2},{0.,{1}}}
{{AlternatingGroup,3},{0.,{1}}}
{{AlternatingGroup,4},{0.,{2,3,7,10}}}
{{AlternatingGroup,5},{0.,{1,3,4,5,8,9,10,12,26,30,31,35,37,40,45,48,51,53,56,58}}}
{{AlternatingGroup,6},{15800.3,{3,5,8,10,25,27,28,29,32,33,34,36,37,39,40,41,44,45,46,48,63,65,68,70,73,74,76,78,79,81,83,84,110,111,113,114,115,116,118,119,133,134,136,138,139,141,143,144,146,150,151,155,158,162,163,167,169,172,177,180,181,183,184,185,188,189,190,192,206,210,211,215,217,220,225,228,231,233,236,238,241,243,244,245,248,249,250,252,266,270,271,275,277,280,285,288,291,293,296,298,314,315,317,318,319,320,322,323,325,328,333,336,339,341,344,346,351,353,356,358}}}
From Stan Wagon, Aug 8, 2018
α A n+k,n | n=1;complete K k+1 | 2 | 3 | 4 | 5 | 6 | 7 |
k=1; bipartite | 1 | 3 | 12 | 60 | 360 | 2520 | 20160 |
k=2 | 1 | 4 | 20 | 120 | 840 | 6720 | [50880,60480] |
k=3 | 1 | 5 | 30 | [204,209] | <1680 | <15120 | <151200 |
k=4 | 1 | 6 | 42 | 336 | | | |
k=5 | 1 | 7 | 56 | 504 | | | |
k=6 | 1 | 8 | 72 | 720 | 7920 | 95040 | |
k | 1 | k+2 | (k+2)(k+3) | ∞ many perfect | ∞ many perfect | ∞ many perfect |
Table 1. Known results for the independence number of . Perfect strategies exist in all cases shown except the red entries, and perhaps the bold one.
A
n+k,n
{1,1,4,20,120,840,6720}
IndependencePolynomial
IndependencePolynomial
(poly=Factor@Table[GraphData[{"AlternatingGroupGraph",n},"IndependencePolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x])//Column
In[]:=
CoefficientList[Take[poly,4],x]
In[]:=
coef=Factor/@FindLinearRecurrence[poly]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
Simplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
In[]:=
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
In[]:=
soln=FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>2]
In[]:=
CoefficientListTable+,{n,10}//Expand,x//Column
-n
2
n
1-
1+4x
n
1+
1+4x
In[]:=
Table+,{n,10}//Expand
-n
2
n
1-
1+4x
n
1+
1+4x
In[]:=
TableLucasLn,1
n/2
x
x
,{n,10}//ExpandSubtract@@@Tablex(x+2)+LucasLn,1
n/2
x
x
,GraphData[{"AlternatingGroupGraph",n},"IndependencePolynomial"][x],{n,3,10}//ExpandIndependenceRatio
IndependenceRatio
In[]:=
seq=Table[GraphData[{"AlternatingGroupGraph",n},"IndependenceRatio"],{n,2,6}]
Out[]=
1,,,,
1
3
1
3
1
3
1
3
From Stan Wagon 2018-07-30: "FWIW Piotr has been expessing doubts that the 1/3 pattern continues. I am still hopeful as it is too beautiful."
In[]:=
FullSimplify[FindSequenceFunction[Rest@seq,n-3],n>3&&n∈Integers]
Table[Floor[2n/3]/(2n),{n,2,6}]
n!/2
IndependentEdgeSetCount
IndependentEdgeSetCount
In[]:=
seq=Table[GraphData[{"AlternatingGroupGraph",n},"IndependentEdgeSetCount"],{n,2,6}]
Out[]=
{1,4,2649,Missing[NotAvailable],Missing[NotAvailable]}
IndependentVertexSetCount
IndependentVertexSetCount
In[]:=
seq=Table[GraphData[{"AlternatingGroupGraph",n},"IndependentVertexSetCount"],{n,2,6}]
Out[]=
{2,4,108,954748238,Missing[NotAvailable]}
FindSequenceFunction[seq,n]//FullSimplify
In[]:=
gf=FindGeneratingFunction[seq,x]
3
x
In[]:=
FullSimplify[SeriesCoefficient[gf,{x,0,n}],n>2]
Table[LucasL[n]+3,{n,2,6}]
IntersectionNumber
IntersectionNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"IntersectionNumber"],{n,2,6}]
IrredundancePolynomial
IrredundancePolynomial
(poly=Factor@Table[GraphData[{"AlternatingGroupGraph",n},"IrredundancePolynomial"],{n,k0=4,20}]/.f_Functionf[x])//Column
In[]:=
coef=Factor/@FindLinearRecurrence[poly]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
Simplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]




In[]:=
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>0]
IrredundantSetCount
IrredundantSetCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"IrredundantSetCount"],{n,2,6}]
In[]:=
coef=FindLinearRecurrence[Rest@seq]
In[]:=
Length[coef]
In[]:=
Take[seq,1+{1,8}]
In[]:=
Join[{7},LinearRecurrence[{3,-2,-1,2,-2,0,2,-1},{22,29,39,60,94,151,241,400},20]]
FindSequenceFunction[DeleteMissing@seq,n]
In[]:=
FindSequenceFunction[Drop[seq,2],n-4]
In[]:=
gf=FindGeneratingFunction[DeleteMissing@seq,x]
3
x
CoefficientListSeries(1-x--+),{x,0,20},x
7+x-23+3+9-9+14+2-6
2
x
3
x
4
x
5
x
6
x
7
x
8
x
2
(-1+x)
2
x
4
x
6
x
In[]:=
Refine[SeriesCoefficient[gf,{x,0,n}],n>3]
In[]:=
terms=List@@res;
In[]:=
N[terms/.n0]//Chop
In[]:=
terms[[All,1]]
In[]:=
Expand[1+2(1+n)]
In[]:=
Table[3+2n+RootSum[1---+&,&],{n,40}]
2
#1
4
#1
5
#1
6
#1
n
#
Table[Piecewise[{{7,n3}},3+2n+RootSum[1---+&,&]],{n,2,6}]
2
#1
4
#1
5
#1
6
#1
n
#
KirchhoffIndex
KirchhoffIndex
seq=Table[GraphData[{"AlternatingGroupGraph",n},"KirchhoffIndex"],{n,2,6}]
(seq=Table[KirchhoffIndex@AlternatingGroupalGraph[n],{n,3,40}])//Timing
FindSequenceFunction[Drop[seq,3],n-5]//Head//Timing
In[]:=
FindLinearRecurrence[Drop[seq,3]]//Head//Timing
In[]:=
FindGeneratingFunction[seq,x]//Head//Timing
KirchhoffSumIndex
KirchhoffSumIndex
seq=Table[GraphData[{"AlternatingGroupGraph",n},"KirchhoffSumIndex"],{n,2,6}]
(seq=Table[KirchhoffSumIndex@AlternatingGroupalGraph[n],{n,3,40}])//Timing
In[]:=
FindSequenceFunction[Drop[seq,3],n-5]//Head//Timing
In[]:=
FindLinearRecurrence[Drop[seq,3]]//Head//Timing
In[]:=
FindGeneratingFunction[seq,x]//Head//Timing
LaplacianPolynomial
LaplacianPolynomial
(poly=Factor@Table[GraphData[{"AlternatingGroupGraph",n},"LaplacianPolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x])//Column
In[]:=
coef=Factor/@FindLinearRecurrence[poly]
coef=Factor/@FindPolynomialRecurrence[poly,6]
ToPolynomialRecurrence[p,x,n,coef]
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
TeXForm[%]
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>0]
Table[nx(3x+2)-2x^2+1,{n,10}]
FullSimplify[%-poly]
LeafCount
LeafCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"LeafCount"],{n,2,6}]
Likelihood
Likelihood
seq=Table[GraphData[{"AlternatingGroupGraph",n},"Likelihood"],{n,2,6}]
LongestCycleCount
LongestCycleCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"LongestCycleCount"],{n,2,6}]
LongestPathLength
LongestPathLength
seq=Table[GraphData[{"AlternatingGroupGraph",n},"LongestPathLength"],{n,2,6}]
LongestPathCount
LongestPathCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"LongestPathCount"],{n,2,6}]
LovaszNumber
LovaszNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"LovaszNumber"],{n,2,6}]
MatchingGeneratingPolynomial
MatchingGeneratingPolynomial
Factor@(poly=Table[GraphData[{"AlternatingGroupGraph",n},"MatchingGeneratingPolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x])//Column
In[]:=
CoefficientList[Take[poly,5],x]
In[]:=
coef=Factor/@FindLinearRecurrence[poly]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
In[]:=
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
Simplify[SeriesCoefficient[gf,{z,0,n}],n>2]
In[]:=
Table-nx(2+7x)-++++,{n,5}//Factor
1
3/2
(1+4x)
-n
2
n
1-
1+4x
n
1+
1+4x
2
n
2
x
1+4x
n
1-
1+4x
n
1+
1+4x
3/2
(1+4x)
n
1-
1+4x
n
1+
1+4x
In[]:=
Table-nx(2+7x)-+++,{n,5}//Factor
1
3/2
(1+4x)
-n
2
n
1-
1+4x
n
1+
1+4x
3/2
(1+4x)
2
n
2
x
1+4x
n
1-
1+4x
n
1+
1+4x
MatchingNumber
MatchingNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MatchingNumber"],{n,2,6}]
FullSimplify[FindSequenceFunction[seq,n],n∈Integers]
MatchingPolynomial
MatchingPolynomial
(poly=Factor@Table[GraphData[{"AlternatingGroupGraph",n},"MatchingPolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x])//Column
In[]:=
coef=Factor/@FindLinearRecurrence[poly]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
In[]:=
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
SeriesCoefficient[gf,{z,0,n}]
MaximalCliqueCount
MaximalCliqueCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MaximalCliqueCount"],{n,2,6}]
FindSequenceFunction[Rest@seq,n]
MaximalIndependencePolynomial
MaximalIndependencePolynomial
(poly=Table[GraphData[{"AlternatingGroupGraph",n},"MaximalIndependencePolynomial"],{n,2,6}]/.f_Functionf[x])//Column
MaximalIndependentEdgeSetCount
MaximalIndependentEdgeSetCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MaximalIndependentEdgeSetCount"],{n,2,6}]
(seq=Table[Length@FindAllMaximalIndependentEdgeSets[AlternatingGroupalGraph[n]],{n,3,35}])//Timing
In[]:=
coef=FindLinearRecurrence[seq]
In[]:=
Length[coef]
In[]:=
LinearRecurrence[coef,Take[seq,Length@coef],{-1,20}]//Take[#,13]&
In[]:=
seq=LinearRecurrence[{0,5,3,-10,-12,7,18,4,-11,-8,1,3,1},{2,4,12,14,40,56,112,178,306,482,792,1214,1924},40]
In[]:=
FindSequenceFunction[Drop[seq,2],n-4]//Head//Timing
In[]:=
gf=xFindGeneratingFunction[seq,x,ValidationLength5]
In[]:=
CoefficientListSeries-,{x,0,20},x
2(1+2x+-6-6+7+12--9-6+2+)
2
x
3
x
4
x
5
x
6
x
7
x
8
x
9
x
11
x
12
x
2
(-1+)
2
x
3
(-1++)
2
x
3
x
In[]:=
Refine[SeriesCoefficient[gf,{x,0,n}],n>0&&n∈Integers]
MaximalIndependentVertexSetCount
MaximalIndependentVertexSetCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MaximalIndependentVertexSetCount"],{n,2,6}]
FindSequenceFunction[seq,n]//FullSimpify
In[]:=
gf=FindGeneratingFunction[seq,x]
3
x
In[]:=
FullSimplify[SeriesCoefficient[gf,{x,0,n}],n>2]
MaximalIrredundantSetCount
MaximalIrredundantSetCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MaximalIrredundantSetCount"],{n,2,6}]
In[]:=
FindSequenceFunction[DeleteMissing@Drop[seq,2],n-4]//Head//Timing
In[]:=
FindLinearRecurrence[DeleteMissing@Drop[seq,2]]//Head//Timing
In[]:=
FindGeneratingFunction[seq,x,ValidationLength5]//Head//Timing
MaximumCliqueCount
MaximumCliqueCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MaximumCliqueCount"],{n,2,6}]
FindSequenceFunction[Rest@seq,n]
MaximumIndependentEdgeSetCount
MaximumIndependentEdgeSetCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MaximumIndependentEdgeSetCount"],{n,2,6}]
In[]:=
gf=FindGeneratingFunction[seq,x]
3
x
In[]:=
FullSimplify[SeriesCoefficient[gf,{x,0,n}],n>2]
MaximumIndependentVertexSetCount
MaximumIndependentVertexSetCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MaximumIndependentVertexSetCount"],{n,2,6}]
In[]:=
gf=FindGeneratingFunction[seq,x]
3
x
In[]:=
FullSimplify[SeriesCoefficient[gf,{x,0,n}],n>2]
MaximumIrredundantSetCount
MaximumIrredundantSetCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MaximumIrredundantSetCount"],{n,2,6}]
In[]:=
FindGeneratingFunction[DeleteMissing@seq,x]//Head//Timing
FindSequenceFunction[DeleteMissing@seq,n]//Head//Timing
MaximumLeafNumber
MaximumLeafNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MaximumLeafNumber"],{n,2,6}]
In[]:=
FindSequenceFunction[DeleteMissing@Rest@seq,n-3]
MaximumVertexDegree
MaximumVertexDegree
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MaximumVertexDegree"],{n,2,6}]
MeanDistance
MeanDistance
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MeanDistance"],{n,2,6}]
FindSequenceFunction[seq,n]//Factor
MinimalDominatingSetCount
MinimalDominatingSetCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MinimalDominatingSetCount"],{n,2,6}]
In[]:=
FindSequenceFunction[DeleteMissing@Rest@seq,n-3]
In[]:=
gf=FindGeneratingFunction[seq,x]
3
x
In[]:=
Refine[SeriesCoefficient[gf,{x,0,n}],n>3]
MinimalDominatingSetSignature
MinimalDominatingSetSignature
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MinimalDominatingSetSignature"],{n,2,6}]//Column
FindSequenceFunction[DeleteMissing@seq,n]//Factor
MinimalEdgeCoverCount
MinimalEdgeCoverCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MinimalEdgeCoverCount"],{n,2,6}]
In[]:=
seq={1,6,24,74,180,464,1113,2646,6360,15222,36795,89584,219635,542320,1346881,3361998,8427172,21195416,53455740,135112332,342093443,867325032,2201286622,5591469852,14211796995,36139507614,91934054637,233934039872,595393224041,1515602413390};
In[]:=
seq=Rest@CoefficientList[Series[x*(1+x)*(1+x-2*x^2-14*x^3-39*x^4+63*x^5+69*x^6+55*x^7-39*x^8-85*x^9-118*x^10-102*x^11-63*x^12-27*x^13-7*x^14-x^15)/((1-x^2-x^3)^3*(1-x-x^2-x^3)^2*(1-2*x-x^2-x^3)),{x,0,50}],x]
In[]:=
coef=FindLinearRecurrence[seq]
In[]:=
Length[coef]
In[]:=
Take[seq,18]
In[]:=
LinearRecurrence[{4,1,-12,-15,24,49,6,-73,-76,5,80,72,14,-30,-34,-19,-6,-1},{1,6,24,74,180,464,1113,2646,6360,15222,36795,89584,219635,542320,1346881,3361998,8427172,21195416},30]
FindSequenceFunction[seq,n]
In[]:=
gf=xFactor@FindGeneratingFunction[seq,x,ValidationLength5]
In[]:=
CoefficientListSeries-(-1+2x++),{x,0,20},x
(1+x)(-1-x+2+14+39-63-69-55+39+85+118+102+63+27+7+)
2
x
3
x
4
x
5
x
6
x
7
x
8
x
9
x
10
x
11
x
12
x
13
x
14
x
15
x
3
(-1++)
2
x
3
x
2
(-1+x++)
2
x
3
x
2
x
3
x
In[]:=
Series[gf,{x,0,20}]
In[]:=
res=Refine[SeriesCoefficient[gf,{x,0,n}],n>0&&n∈Integers]
MinimalTotalDominatingSetCount
MinimalTotalDominatingSetCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MinimalTotalDominatingSetCount"],{n,2,6}]
seq={2,4,9,12,15,21,21,20,30,45,44,49,65,77,98,132,153,180,247,329,409,528,690,889,1180,157637,2657,3538,4684,6169,8164,10783,14229,18877,25036,33078,43757,57996,76809,101721,134773,178450,236284,313097,414828,549383};
In[]:=
coef=FindLinearRecurrence[seq]
In[]:=
Length[coef]
In[]:=
Take[seq,Length[coef]]
In[]:=
LinearRecurrence[{2,-1,1,-1,0,0,-1,0,1,1,-1},{2,4,9,12,15,21,21,20,30,45,44},20]
In[]:=
FindSequenceFunction[seq,n]
In[]:=
gf=xFindGeneratingFunction[seq,x,ValidationLength5]
In[]:=
CoefficientListSeries(1----++),{x,0,20},x
2+3-4-2-2-9-2+9+12-9
2
x
3
x
4
x
5
x
6
x
7
x
8
x
9
x
10
x
2
(-1+x)
3
x
4
x
5
x
6
x
8
x
9
x
In[]:=
FullSimplify[SeriesCoefficient[gf,{x,0,n}],n∈Integers&&n>0]
In[]:=
Table2n+RootSum[-1-#1+&,#^n&]+(1+)Root[1-#1+&,2]-+Root[1-#1+&,3]-,{n,20}//RootReduce
3
#1
n
(-1)
3
#1
2+n
2
Root[-1++&,1]
2
#1
3
#1
2+n
2
Root[-1++&,2]
2
#1
3
#1
3
#1
2+n
2
Root[-1++&,1]
2
#1
3
#1
2+n
2
Root[-1++&,3]
2
#1
3
#1
In[]:=
TableRoot[1-#1+&,2]-+Root[1-#1+&,3]-,{n,2,30,2}//RootReduce
3
#1
2+n
2
Root[-1++&,1]
2
#1
3
#1
2+n
2
Root[-1++&,2]
2
#1
3
#1
3
#1
2+n
2
Root[-1++&,1]
2
#1
3
#1
2+n
2
Root[-1++&,3]
2
#1
3
#1
In[]:=
Table[RootSum[-1-#+#^3&,&],{n,20}]
-n
#
In[]:=
Table[2n+RootSum[-1-#1+&,#^n&]+(1+)RootSum[-1-#+#^3&,&],{n,20}]
3
#1
n
(-1)
-n/2
#
MinimumCoveringsByMaximalCliquesCount
MinimumCoveringsByMaximalCliquesCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MinimumCoveringsByMaximalCliquesCount"],{n,2,6}]
In[]:=
seq={1,4,30,12,98,28,270,60,682,124,1638,252,3810,508,8670,1020,19418,2044,42966,4092,94162,8188,204750,16380,442314,32764,950214,65532,2031554,131068,4325310,262140,9174970,524284,19398582,1048572,40894386,2097148,85983150};
In[]:=
Join[{1},Table[If[Mod[n,2]0,2,n](2^Ceiling[n/2]-2),{n,4,20}]]
Table[Piecewise[{{1,n3},{2(2^Ceiling[n/2]-2),Mod[n,2]0},{(2^Ceiling[n/2]-2)n,Mod[n,2]1}}],{n,2,6}]
In[]:=
FindSequenceFunction[DeleteMissing@Drop[seq,1],n-3]//Head//Timing
In[]:=
coef=FindLinearRecurrence[DeleteMissing@Drop[seq,1]]
In[]:=
Length@coef
In[]:=
Take[seq,1+{1,8}]
In[]:=
Join[{1},LinearRecurrence[{0,6,0,-13,0,12,0,-4},{4,30,12,98,28,270,60,682},20]]
In[]:=
gf=FindGeneratingFunction[seq,x]
3
x
In[]:=
CoefficientListSeries,{x,0,20},x
1+4x+24-12-69+8+60-20
2
x
3
x
4
x
5
x
6
x
8
x
2
(1-3+2)
2
x
4
x
In[]:=
FullSimplify[SeriesCoefficient[gf,{x,0,n}],n>3&&n∈Integers]
MinimumConnectedDominatingSetCount
MinimumConnectedDominatingSetCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MinimumConnectedDominatingSetCount"],{n,2,6}]
In[]:=
FindSequenceFunction[DeleteMissing@Drop[seq,2],n-4]//FullSimplify
MinimumDistinguishingLabelingCount
MinimumDistinguishingLabelingCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MinimumDistinguishingLabelingCount"],{n,2,6}]
FindSequenceFunction[DeleteMissing@seq,n]
FindGeneratingFunction[DeleteCases[seq,_Missing],x]
MinimumDominatingSetCount
MinimumDominatingSetCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MinimumDominatingSetCount"],{n,2,6}]
In[]:=
FindSequenceFunction[DeleteMissing@Drop[seq,4],n-6]//Factor
MinimumEdgeCoverCount
MinimumEdgeCoverCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MinimumEdgeCoverCount"],{n,2,6}]
In[]:=
seq={1,2,21,8,85,18,217,32,441,50,781,72,1261,98,1905,128,2737,162,3781,200,5061,242,6601,288,8425,338,10557,392,13021,450,15841,512,19041,578,22645,648,26677,722,31161,800,36121,882,41581,968,47565,1058,54097,1152};
In[]:=
FullSimplify[FindSequenceFunction[seq,n],n∈Integers]
In[]:=
coef=FindLinearRecurrence[seq]
In[]:=
Length[coef]
In[]:=
Take[seq,8]
In[]:=
LinearRecurrence[{0,4,0,-6,0,4,0,-1},{1,2,21,8,85,18,217,32},20]
In[]:=
Table[Floor[(n+3)/2],{n,20}]
In[]:=
gf=xFindGeneratingFunction[seq,x]
In[]:=
CoefficientListSeries,{x,0,20},x
1+2x+17+7-2-
2
x
4
x
5
x
6
x
4
(-1+)
2
x
In[]:=
Refine[SeriesCoefficient[gf,{x,0,n}],n>0]
In[]:=
Tablen(+3n-1-(+n-1))4,{n,20}
2
n
n
(-1)
2
n
MinimumTotalDominatingSetCount
MinimumTotalDominatingSetCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MinimumTotalDominatingSetCount"],{n,2,6}]
In[]:=
FindSequenceFunction[DeleteMissing@Drop[seq,2],n-4]
MinimumVertexCoverCount
MinimumVertexCoverCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MinimumVertexCoverCount"],{n,2,6}]
MinimumVertexDegree
MinimumVertexDegree
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MinimumVertexDegree"],{n,2,6}]
MolecularTopologicalIndex
MolecularTopologicalIndex
seq=Table[GraphData[{"AlternatingGroupGraph",n},"MolecularTopologicalIndex"],{n,2,6}]
FindLinearRecurrence[seq
FindSequenceFunction[seq,n]//Factor
Nonhamiltonian
Nonhamiltonian
Table[GraphData[{"AlternatingGroupGraph",n},"Nonhamiltonian"],{n,2,6}]
OddChordlessCycleCount
OddChordlessCycleCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"OddChordlessCycleCount"],{n,2,6}]
PathCount
PathCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"PathCount"],{n,2,6}]
FindSequenceFunction[DeleteMissing@seq,n]//Factor
PathPolynomial
PathPolynomial
(poly=Factor[Table[GraphData[{"AlternatingGroupGraph",n},"PathPolynomial"],{n,k0=1,kmax=6}]/.f_Function:>f[x]])//Column
In[]:=
coef=Factor/@FindLinearRecurrence[DeleteMissing@poly]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
In[]:=
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>0]
poly2=Table[XXX,{n,k0,kmax}]
FullSimplify[poly2-poly]
PentagonCount
PentagonCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"PentagonCount"],{n,2,6}]
(seq=Table[CycleCount[AlternatingGroupGraph[n],5],{n,8}])//Timing
(seq=Table[CycleCount[AlternatingGroupGraph[n],5],{n,9}])//Timing
Planar
Planar
seq=Table[GraphData[{"AlternatingGroupGraph",n},"Planar"],{n,2,6}]
ProjectivePlaneCrossingNumber
ProjectivePlaneCrossingNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"ProjectivePlaneCrossingNumber"],{n,2,6}]
Radius
Radius
seq=Table[GraphData[{"AlternatingGroupGraph",n},"Radius"],{n,2,6}]
RankPolynomial
RankPolynomial
(poly=Factor@Table[GraphData[{"AlternatingGroupGraph",n},"RankPolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x,y])
In[]:=
coef=Factor/@FindLinearRecurrence[DeleteMissing@poly]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
Simplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
SeriesCoefficient[gf,{z,0,n}]
RectilinearCrossingNumber
RectilinearCrossingNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"RectilinearCrossingNumber"],{n,2,6}]
ReliabilityPolynomial
ReliabilityPolynomial
(poly=Factor@Table[GraphData[{"AlternatingGroupGraph",n},"ReliabilityPolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x])//Column
In[]:=
coef=Factor/@FindLinearRecurrence[DeleteMissing@poly]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>0]
FullSimplify[poly2-poly]
ShannonCapacity
ShannonCapacity
seq=Table[GraphData[{"AlternatingGroupGraph",n},"ShannonCapacity"],{n,2,6}]
SigmaPolynomial
SigmaPolynomial
(poly=Factor@Table[GraphData[{"AlternatingGroupGraph",n},"SigmaPolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x])//Column
In[]:=
coef=Factor/@FindLinearRecurrence[DeleteMissing@poly]
ToPolynomialRecurrence[p,x,n,coef]
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
TeXForm[%]
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>0]
Table[nx(3x+2)-2x^2+1,{n,10}]
FullSimplify[%-poly]
Skewness
Skewness
seq=Table[GraphData[{"AlternatingGroupGraph",n},"Skewness"],{n,2,6}]
SpanningTreeCount
SpanningTreeCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"SpanningTreeCount"],{n,2,6}]
In[]:=
FindSequenceFunction[seq,n]//FullSimplify
SquareCount
SquareCount
A317487
seq=Table[GraphData[{"AlternatingGroupGraph",n},"SquareCount"],{n,2,6}]
(seq=Table[CycleCount[AlternatingGroupGraph[n],4],{n,9}])//Timing
(seq=Table[CycleCount[AlternatingGroupGraph[n],4],{n,10}])//Timing
In[]:=
FindLinearRecurrence[Drop[seq,3]]
In[]:=
FindSequenceFunction[Drop[seq,3],n-3]
FindGeneratingFunction[seq,x]
StabilityIndex
StabilityIndex
seq=Table[GraphData[{"AlternatingGroupGraph",n},"StabilityIndex"],{n,2,6}]
TopologicalIndex
TopologicalIndex
seq=Table[GraphData[{"AlternatingGroupGraph",n},"TopologicalIndex"],{n,2,6}]
ToroidalCrossingNumber
ToroidalCrossingNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"ToroidalCrossingNumber"],{n,2,6}]
TotalDominatingSetCount
TotalDominatingSetCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"TotalDominatingSetCount"],{n,2,6}]
FullSimplify[FindSequenceFunction[DeleteMissing@seq,n],n∈Integers]
TotalDominationNumber
TotalDominationNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"TotalDominationNumber"],{n,2,6}]
TotalDominationPolynomial
TotalDominationPolynomial
(poly=Factor@Table[GraphData[{"AlternatingGroupGraph",n},"TotalDominationPolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x])//Column
In[]:=
coef=Factor/@FindLinearRecurrence[DeleteMissing@poly]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
In[]:=
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>0]
Traceable
Traceable
Table[GraphData[{"AlternatingGroupGraph",n},"Traceable"],{n,2,6}]
Triameter
Triameter
TriangleCount
TriangleCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"TriangleCount"],{n,2,6}]
(seq=Table[CycleCount[AlternatingGroupGraph[n],3],{n,8}])//Timing
(seq=Table[CycleCount[AlternatingGroupGraph[n],3],{n,9}])//Timing
TuttePolynomial
TuttePolynomial
(poly=Factor@Table[GraphData[{"AlternatingGroupGraph",n},"TuttePolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x,y])//Column
In[]:=
coef=Factor/@FindLinearRecurrence[DeleteMissing@poly]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
Refine[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
FullSimplify[SeriesCoefficient[gf,{z,0,n}],n>0]
FullSimplify[poly2-poly]
Untraceable
Untraceable
Table[GraphData[{"AlternatingGroupGraph",n},"Untraceable"],{n,2,6}]
VertexConnectivity
VertexConnectivity
Table[GraphData[{"AlternatingGroupGraph",n},"VertexConnectivity"],{n,2,6}]
VertexCount
VertexCount
In[]:=
seq=Table[GraphData[{"AlternatingGroupGraph",n},"V"],{n,2,6}]
Out[]=
{1,3,12,60,360}
In[]:=
FindSequenceFunction[seq,n-1]//FullSimplify
Out[]=
1
2
In[]:=
FunctionExpand[%]
Out[]=
1
2
In[]:=
Table[n!/2,{n,2,6}]
Out[]=
{1,3,12,60,360}
VertexCoverCount
VertexCoverCount
seq=Table[GraphData[{"AlternatingGroupGraph",n},"VertexCoverCount"],{n,2,6}]
FindSequenceFunction[seq,n]
VertexCoverNumber
VertexCoverNumber
seq=Table[GraphData[{"AlternatingGroupGraph",n},"VertexCoverNumber"],{n,2,6}]
FindSequenceFunction[seq,n]//FullSimplify
In[]:=
gf=FindGeneratingFunction[seq,x]
3
x
In[]:=
FullSimplify[SeriesCoefficient[gf,{x,0,n}],n>3]
VertexCoverPolynomial
VertexCoverPolynomial
(poly=Factor@Table[GraphData[{"AlternatingGroupGraph",n},"VertexCoverPolynomial"],{n,k0=1,kmax=6}]/.f_Functionf[x])//Column
In[]:=
coef=Factor/@FindLinearRecurrence[poly]
In[]:=
ToPolynomialRecurrence[p,x,n,coef]
In[]:=
FormattedPolynomialRecurrence[p,x,n,coef]//TraditionalForm
In[]:=
TeXForm[%]
In[]:=
LinearRecurrence[coef,poly,{2-k0,Length[coef]-k0+1}]
In[]:=
FullSimplify[RSolve[Prepend[Table[p[k+k0-1,x]poly[[k]],{k,Length[coef]}],ToPolynomialRecurrence[p,x,n,coef]],p[n,x],n],n∈Integers&&n>0]
gf=Factor[FindGeneratingFunction[poly,z]]
k0
z
SeriesCoefficient[gf,{z,0,n}]
poly2=Table[LinearRecurrence[{x^2,2x^3,x^4},{x^2,x^3(4+x),x^4(3+6x+x^2)},{n}][[1]],{n,k0,20}]
FullSimplify[poly2-poly]
VertexDegrees
VertexDegrees
seq=Table[GraphData[{"AlternatingGroupGraph",n},"VertexDegrees"],{n,3,10}]
WienerIndex
WienerIndex
seq=Table[GraphData[{"AlternatingGroupGraph",n},"WienerIndex"],{n,2,6}]
FindSequenceFunction[seq,n]//Factor
WienerSumIndex
WienerSumIndex
seq=Table[GraphData[{"AlternatingGroupGraph",n},"WienerSumIndex"],{n,2,6}]
(seq=Table[WienerSumIndex@AlternatingGroupalGraph[n],{n,3,40}])//Timing
In[]:=
FindSequenceFunction[Drop[seq,3],n-5]//Head//Timing
In[]:=
FindLinearRecurrence[Drop[seq,3]]//Head//Timing
In[]:=
FindGeneratingFunction[seq,x]//Head//Timing
Recognize
Recognize
Hamiltonian Cycles
Hamiltonian Cycles
Testing
Testing
GraphData
GraphData


Cite this as: Eric W. Weisstein, "Alternating Group Graph" from the Notebook Archive (2018), https://notebookarchive.org/2019-07-0z3qvqa

Download

