Oblate Spheroid with Trigonometric Parametric Equations
Author
Alejandro Latorre Chirot
Title
Oblate Spheroid with Trigonometric Parametric Equations
Description
This animation shows how a point moves in such a way that the sum of the squares of its distances to the X and Y axes is always equal to 4. An oblate spheroid is formed.
Category
Working Material
Keywords
Spheroid, oblate, square, suma, distances
URL
http://www.notebookarchive.org/2024-08-9puz8kd/
DOI
https://notebookarchive.org/2024-08-9puz8kd
Date Added
2024-08-21
Date Last Modified
2024-08-21
File Size
31.79 kilobytes
Supplements
Rights
Redistribution rights reserved



Oblate Spheroid with Trigonometric Parametric Equations
Oblate Spheroid with Trigonometric Parametric Equations
Alejandro Latorre Chirot
LugarGeometricoSuperficies8Parametricas::usage="Hallar e identificar la ecuación del lugar geométrico de un punto que se mueve de tal manera que la suma de los cuadrados de sus distancias a los ejes X e Y es siempre igual a 4. Construir la superficie. Respuesta: + + 2 = 4. Referencia: Geometría Analítica, Charles H. Lehmann, Ed. Limusa (2003). Prob.- 8, pág.- 437.";
2
x
2
y
2
z
Aplicando la información:
In[]:=
Expand+-4
2
Norm[{1,0,0}{-x,-y,-z}]
Norm[{1,0,0}]
2
Norm[{0,1,0}{-x,-y,-z}]
Norm[{0,1,0}]
-4+++2;
2
Abs[x]
2
Abs[y]
2
Abs[z]
2
x
2
y
2
z
In[]:=
Manipulated1=N[4+2];d2=N[4+2];w=Grid,,SUMA,{d1,d2,d1+d2},FrameAll,ItemStyle->12;Show[ParametricPlot3D[2Cos[v]Cos[u],2Cos[v]Sin[u],)"},-7,7,0.1},Delimiter,{{w,2,"Distancia al cuadrado del punto P al eje X, Distancia al cuadrado del punto P al eje Y y la suma"}},ControlPlacementLeft
2
(Cos[x1]Sin[x1/2])
2
(Sin[x1])
2
(Cos[x1]Cos[x1/2])
2
(Sin[x1])
2
(P-X)
2
(P-Y)
2
Sin[v],{u,0,π},{v,0,2π},Mesh->None,PlotStyleDirective[Green,Opacity[0.3],Specularity[White,30]],PerformanceGoal"Quality"],Graphics3D[Red,Ball[2Cos[x1]Cos[x1/2],2Cos[x1]Sin[x1/2],2
Sin[x1],0.05]],Graphics3D[{Black,Ball[{2Cos[x1]Cos[x1/2],0,0},0.05]}],Graphics3D[{Black,Ball[{0,2Cos[x1]Sin[x1/2],0},0.05]}],Graphics3D[Black,Dashed,Thick,Line[2Cos[x1]Cos[x1/2],2Cos[x1]Sin[x1/2],2
Sin[x1],{2Cos[x1]Cos[x1/2],0,0}]],Graphics3D[Black,Dashed,Thick,Line[2Cos[x1]Cos[x1/2],2Cos[x1]Sin[x1/2],2
Sin[x1],{0,2Cos[x1]Sin[x1/2],0}]],AxesLabel->(Style[#,15,Blue]&/@{"X","Y","Z"}),AxesOrigin{0,0,0},AxesTrue,BoxedFalse,BoxRatiosAutomatic,PlotRangeAll,ImageSizeFull,ViewPoint{1.3,-2.4,2.}],Style["Lugar geométrico: esferoide oblato:",Bold,Medium],{{x1,1,"Valor (x
1
Out[]=
| |||||||||||||||||
|


Cite this as: Alejandro Latorre Chirot, "Oblate Spheroid with Trigonometric Parametric Equations" from the Notebook Archive (2024), https://notebookarchive.org/2024-08-9puz8kd

Download

