Simplified Machine-Learning Workflow #8
Author
Anton Antonov
Title
Simplified Machine-Learning Workflow #8
Description
Semantic Analysis (Part 3)
Category
Educational Materials
Keywords
URL
http://www.notebookarchive.org/2020-09-55st5h2/
DOI
https://notebookarchive.org/2020-09-55st5h2
Date Added
2020-09-11
Date Last Modified
2020-09-11
File Size
3.9 megabytes
Supplements
Rights
Redistribution rights reserved



Latent Semantic Analysis (Part 3)
Latent Semantic Analysis (Part 3)
A Wolfram livecoding session
Anton Antonov
January 2020
January 2020
Session overview
Session overview
1
.Review: last session’s example.
2
.Review: the motivational example -- full blown LSA workflow.
3
.Linear vector space representation:
3
.1
.LSA’s most fundamental operation,
3
.2
.matrix with named rows and columns.
4
.Pareto Principle adherence
4
.1
.for a document,
4
.2
.for a document collection, and
4
.3
.(in general.)
Data
Data
Out[]=
|
Last session’s example --“Eat your own dog food”
Last session’s example --“Eat your own dog food”
Full LSA workflow (over Raku documentation)
Full LSA workflow (over Raku documentation)
Raku?
Raku?
Formerly known as “Raku Perl 6”.
In[]:=
WebImage["https://www.raku.org"]
Out[]=
Where from?
Where from?
In[]:=
WebImage["https://github.com/Raku/doc"]
Out[]=
Natural language commands
Natural language commands
In[]:=
ToLSAMonWLCommand["create with aDocuments;make the document term matrix;show data summary;apply the LSI functions IDF, TermFrequency, Cosine;extract 36 topics using the method ICA and 12 max steps;show the topics table with 9 table columns;show thesaurus table of regex, array, chars, role, grammar;",False]
Out[]=
Hold[LSAMonUnit[aDocuments]⟹LSAMonMakeDocumentTermMatrix[]⟹LSAMonEchoDocumentTermMatrixStatistics[]⟹LSAMonApplyTermWeightFunctions[GlobalWeightFunctionIDF,LocalWeightFunctionNone,NormalizerFunctionCosine]⟹LSAMonExtractTopics[NumberOfTopics36,MethodICA,MaxSteps12]⟹LSAMonEchoTopicsTable[NumberOfTableColumns9]⟹LSAMonEchoStatisticalThesaurus[Words{regex,array,chars,role,grammar}]]
In[]:=
lsaNCRakuDoc=ToLSAMonWLCommand["create with aDocuments;make the document term matrix;show data summary;apply the LSI functions IDF, TermFrequency, Cosine;extract 36 topics using the method ICA and 12 max steps;show the topics table with 9 table columns;show thesaurus table of regex, array, chars, role, grammar;"];
»
Context value "documentTermMatrix":
Dimensions: | Density: | |||||||||||||||||
|
»
topics table:
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
»
statistical thesaurus:
term | statistical thesaurus entries |
array | {array,index,list,arrays,@foo,element,c<array>,container,lists,lazy,push,containers} |
chars | {chars,comb,repeated,contexts,l<iterable|/type/iterable>,including,omitted,l<callable|/type/callable>,lazily,applies,behaves,effects} |
grammar | {grammar,parse,rule,top,actions,token,action,grammars,regexes,rest,args,whitespace} |
regex | {regex,adverb,match,matches,abc,whitespace,pattern,character,construct,characters,quoting,describes} |
role | {role,errors,related,common,stringy,additional,initialization,provide,compiler,public,act,roles} |
Vector space model representation
Vector space model representation
The central object a sparse matrix with named rows and columns SSparseMatrix.
Text data -- Shakespeare’s sonnets
Text data -- Shakespeare’s sonnets
Text data - big data questions
Text data - big data questions
In[]:=
Length[lsQuestions]
Out[]=
99
In[]:=
RandomSample[lsQuestions,6]
Out[]=
{ 4. How often do you generate report and data for your facility?, 3. Do you think that there would come a day that R will be replaced by other programs or languages?, 7. How much emphasis do you place on coding techniques like scripting, especially to help process huge amounts of data within a reasonable time frame? Are there other techniques you use to help expedite data processing?,My five questions for Anton:, Q3: What is the very first step you take when cleaning an enormous data set., 5. Do you think R will contribute to the future of AI with its machine learning capabilities?}
In[]:=
SeedRandom[94]lsTextParts=RandomSample[lsQuestions,20]
Out[]=
{,Questions: 1. Could you perhaps use another example to explain how you determined the most important variable?, 5. Are there certain journals you read to stay current on data-driven science?, Q1: What types of data would you say are the most challenging to collect, manage, and clean? Why?, 3. In one of our other classes we are learning about the ETL process and OMOP standards, when you’ve cleaned data in the past have you used the ETL process? If so, How was it done through R?, 2. Where do you see data scientist in healthcare in the future?, 1. What part of the data scientists’ daily work is the most challenging?, 5. Do you think R will contribute to the future of AI with its machine learning capabilities?, 4. What is a data scientist final destination? (from your point of view) or What do you see data scientists in 2040?, 2. How to determine which statistical program to utilize for a project to present the data?, 8. Do you think we will ever realize the promised potential of artificial intelligence (AI), and if not, what is keeping us from doing so?,, 2. You mentioned multiple libraries for data, which ones do you use the most? And have better interface with R?, 5. What was your toughest project and how long did it take to accomplish?, 2. How long do you think it will take to be 90% proficient in R programming language? Assume: a person works 7 hours a day in an R environment., 4. Do data analysts sometimes perform the duties of a data scientist and vice versa?, 1. I’ve read that R has a steep learning curve for beginning programmers and coders, what kind of advice would you have for someone who is new and starting off with R and computer programming altogether to overcome this learning curve? , a. They make prediction?,Questions:,}
Matrix representation
Matrix representation
In[]:=
lsaObj=LSAMonUnit[lsTextParts]⟹LSAMonMakeDocumentTermMatrix[{},Automatic];
In[]:=
smat=lsaObj⟹LSAMonTakeDocumentTermMatrix
Out[]=
SparseArray
|
In[]:=
MatrixForm[smat]
Out[]//MatrixForm=
In[]:=
MatrixPlot[smat]
Out[]=
In[]:=
RowSumsAssociation[smat]
Out[]=
id.0010,id.0027,id.0038,id.0047,id.00513,id.0064,id.0075,id.0086,id.0099,id.0107,id.0117,id.0120,id.0138,id.0144,id.01512,id.0169,id.01718,id.0182,id.0191,id.0200
In[]:=
ReverseSort@ColumnSumsAssociation[smat]
Out[]=
data11,learning4,think3,scientist3,use2,read2,questions2,project2,programming2,process2,long2,future2,etl2,curve2,challenging2,you’ve1,works1,work1,view1,vice1,versa1,variable1,utilize1,used1,types1,toughest1,steep1,stay1,statistical1,starting1,standards1,sometimes1,scientists’1,scientists1,science1,say1,realize1,promised1,programmers1,program1,proficient1,present1,prediction1,potential1,point1,person1,perform1,past1,overcome1,ones1,omop1,new1,multiple1,mentioned1,manage1,make1,machine1,libraries1,language1,kind1,keeping1,journals1,i’ve1,interface1,intelligence1,important1,hours1,healthcare1,final1,explain1,example1,environment1,duties1,driven1,determined1,determine1,destination1,day1,daily1,current1,contribute1,computer1,collect1,coders1,cleaned1,clean1,classes1,certain1,capabilities1,better1,beginning1,assume1,artificial1,analysts1,altogether1,advice1,accomplish1,90%1,20401
In[]:=
smat//Head
Out[]=
SSparseMatrix
In[]:=
SparseArray[smat]
Out[]=
SparseArray
|
Further operations for the sparse matrix with named rows and columns
Further operations for the sparse matrix with named rows and columns
Arithmetic
Arithmetic
In[]:=
MatrixPlot[10*smat]MatrixForm[10*smat]
Out[]=
Out[]//MatrixForm=
In[]:=
MatrixPlot[10+smat]MatrixForm[10+smat]
Out[]=
Out[]//MatrixForm=
Transposing
Transposing
In[]:=
MatrixPlot[Transpose[smat]]
Out[]=
Similarity matrix
Similarity matrix
In[]:=
MatrixPlot[smat.Transpose[smat]]MatrixForm[smat.Transpose[smat]]
::dnsame
Out[]=
::dnsame
Out[]//MatrixForm=
id.001 | id.002 | id.003 | id.004 | id.005 | id.006 | id.007 | id.008 | id.009 | id.010 | id.011 | id.012 | id.013 | id.014 | id.015 | id.016 | id.017 | id.018 | id.019 | id.020 | |
id.001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
id.002 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
id.003 | 0 | 0 | 8 | 1 | 1 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 0 | 0 | 0 |
id.004 | 0 | 0 | 1 | 7 | 1 | 1 | 2 | 0 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
id.005 | 0 | 0 | 1 | 1 | 17 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 |
id.006 | 0 | 0 | 1 | 1 | 1 | 4 | 1 | 1 | 3 | 1 | 0 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
id.007 | 0 | 0 | 1 | 2 | 1 | 1 | 5 | 0 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
id.008 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 6 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 |
id.009 | 0 | 0 | 2 | 2 | 2 | 3 | 2 | 0 | 11 | 2 | 0 | 0 | 2 | 0 | 0 | 5 | 0 | 0 | 0 | 0 |
id.010 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 7 | 0 | 0 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 0 |
id.011 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 7 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
id.012 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
id.013 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 8 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
id.014 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 0 |
id.015 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 12 | 0 | 1 | 0 | 0 | 0 |
id.016 | 0 | 0 | 2 | 2 | 2 | 3 | 2 | 0 | 5 | 2 | 0 | 0 | 2 | 0 | 0 | 11 | 0 | 0 | 0 | 0 |
id.017 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 22 | 0 | 0 | 0 |
id.018 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
id.019 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
id.020 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
In[]:=
(*MatrixPlot[Transpose[smat].smat]MatrixForm[Transpose[smat].smat]*)
Matrix-vector multiplication -- most similar documents
Matrix-vector multiplication -- most similar documents
In[]:=
Normal[SparseArray[smat〚{5},All〛]]
Out[]=
{{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1}}
In[]:=
MatrixForm[smat.Transpose[smat〚{5},All〛]]
::dnsame
Out[]//MatrixForm=
id.005 | |
id.001 | 0 |
id.002 | 0 |
id.003 | 1 |
id.004 | 1 |
id.005 | 17 |
id.006 | 1 |
id.007 | 1 |
id.008 | 1 |
id.009 | 2 |
id.010 | 1 |
id.011 | 0 |
id.012 | 0 |
id.013 | 1 |
id.014 | 0 |
id.015 | 0 |
id.016 | 2 |
id.017 | 2 |
id.018 | 0 |
id.019 | 0 |
id.020 | 0 |
In[]:=
ReverseSort@RowSumsAssociation[smat.Transpose[smat〚{5},All〛]]
::dnsame
Out[]=
id.00517,id.0172,id.0162,id.0092,id.0131,id.0101,id.0081,id.0071,id.0061,id.0041,id.0031,id.0200,id.0190,id.0180,id.0150,id.0140,id.0120,id.0110,id.0020,id.0010
In[]:=
(lsaObj⟹LSAMonTakeDocuments)["id.005"]
Out[]=
3. In one of our other classes we are learning about the ETL process and OMOP standards, when you’ve cleaned data in the past have you used the ETL process? If so, How was it done through R?
In[]:=
(lsaObj⟹LSAMonTakeDocuments)["id.017"]
Out[]=
1. I’ve read that R has a steep learning curve for beginning programmers and coders, what kind of advice would you have for someone who is new and starting off with R and computer programming altogether to overcome this learning curve?
In[]:=
(lsaObj⟹LSAMonTakeDocuments)["id.013"]
Out[]=
2. You mentioned multiple libraries for data, which ones do you use the most? And have better interface with R?
Additional functions
Additional functions
In[]:=
MatrixForm[Clip[smat,{0,1}]]
Out[]//MatrixForm=
Pareto Principle adherence
Pareto Principle adherence
In[]:=
ResourceFunction["ParetoPrinciplePlot"][RandomReal[{0,1},1000]~Join~RandomReal[{0,0.1},1000]]
In Hamlet (single document)
In Hamlet (single document)
In[]:=
text=ExampleData[{"Text","Hamlet"}];
In[]:=
text
In[]:=
words=Select[StringSplit[ToLowerCase[text],{" ",",",".",";","?","!","...","-"}],StringLength[#]>0&];Length[words]
Out[]=
32318
In[]:=
sentences=Select[StringSplit[ToLowerCase[text],{".",";","?","!","..."}],StringLength[#]>0&];Length[sentences]
Out[]=
4175
In[]:=
ColumnForm[RandomSample[sentences,2]]
Out[]=
o gertrude, come away |
what ceremony else |
In[]:=
LSAMonUnit[sentences]⟹LSAMonMakeDocumentTermMatrix[]⟹LSAMonEchoDocumentTermMatrixStatistics["ParetoPrinciplePlots"True]⟹LSAMonExtractTopics[12,Method"NNMF",MaxSteps12]⟹LSAMonEchoTopicsTable["NumberOfTableColumns"6];
»
Context value "documentTermMatrix":
Dimensions: | Density: | |||||||||||||||||
| ||||||||||||||||||
»
topics table:
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
In[]:=
ResourceFunction["ParetoPrinciplePlot"][Tally[words][[All,2]],ImageSizeLarge]
Out[]=
In[]:=
ResourceFunction["ParetoPrinciplePlot"][{Tally[words][[All,2]],Tally[DeleteStopwords[words]][[All,2]]},ImageSizeLarge]
Out[]=
In the questions
In the questions
In[]:=
LSAMonUnit[lsQuestions]⟹LSAMonMakeDocumentTermMatrix[{},Automatic]⟹LSAMonEchoDocumentTermMatrixStatistics["ParetoPrinciplePlots"True];
»
Context value "documentTermMatrix":
Dimensions: | Density: | |||||||||||||||||
| ||||||||||||||||||
In[]:=
LSAMonUnit[aDocuments]⟹LSAMonMakeDocumentTermMatrix[{},Automatic]⟹LSAMonEchoDocumentTermMatrixStatistics["ParetoPrinciplePlots"True];
»
Context value "documentTermMatrix":
Dimensions: | Density: | |||||||||||||||||
| ||||||||||||||||||
UN Human Rights in different languages (single document)
UN Human Rights in different languages (single document)
In[]:=
GetWords[text_String]:=Select[StringSplit[ToLowerCase[text],{" ",",",".",";","?","!","...","-"}],StringLength[#]>0&];textIDs=Select[ExampleData["Text"],StringMatchQ[#[[2]],"UNHuman"~~__]&];textNames=StringTake[#[[2]],{StringLength["UNHumanRights"]+1,-1}]&/@textIDs;textData=MapThread[Tooltip[Tally[GetWords[ExampleData[#1]]][[All,2]],#2]&,{textIDs,textNames}];textK=0;textData=Map[If[MemberQ[{"English","Hawaiian","Japanese","Korean","Latin","Maori","Russian"},#[[2]]],Callout[#,#[[2]],{100+35*(textK++),Below}],#]&,textData];ResourceFunction["ParetoPrinciplePlot"][textData,"ParetoGridLines"{Automatic,Automatic},PlotLegendstextNames,JoinedTrue,ImageSize1000,PlotLabelStyle["Pareto principle adherence for word tallies of\n\"UN Human Rights\" in different languages\n",Bold,Purple,FontSize14]]
Out[]=
|
In[]:=
Length[StringSplit[ExampleData[{"Text","UNHumanRightsJapanese"}]," "]]
Out[]=
164
In[]:=
Length[StringSplit[ExampleData[{"Text","UNHumanRightsEnglish"}]," "]]
Out[]=
1772
In[]:=
Length[StringSplit[ExampleData[{"Text","UNHumanRightsMaori"}]," "]]
Out[]=
3227
In[]:=
ExampleData[{"Text","UNHumanRightsMaori"}]
Out[]=
No te mea na te whakanoa a na te whakahawea ki nga mana o te tangata i tupu ai nga mahi whakarihariha i pouri ai te ngakau tangata, a ko te kohaetanga o tetahi ao hou e mahorahora ai te tangata ki te korero ki te whakapono, ki te noho noa i runga i te rangimarie a i te ora, kua panuitia hei taumata mo te koingotanga o te ngakau o te mano tini o te tangata. No te mea ki te kore te tangata ae akina kia tae ki te tino hemanawatanga kia hapai hoki i te pakanga hei turaki i te mana tukino hei pehi hoki i te iwi, he mea tika rawa kia tiakina nga mana o te tangata i raro i tenga ritenga o te ture. No te mea he mea tika rawa kia hapainga nga ritenga e tupu ai nga whakaaro whakawhanaunga i waenganui i nga iwi o te ao. No te mea ko nga iwi o te Kotahitanga kua whakaatu ki roto i te Kawenata i te tino whakapumautanga o to ratou whakapono mo te kaupapa o nga mana motuhake o te tangata, mo te ihi me te wana o te tinana tangata, a mo nga tika tauriterite o te tane me te wahine, a kua whakarite tikanga hoki kia hapainga nga ritenga toko i te ora me te whakapiki i nga ahuatanga o te oranga i tenei ao i roto i te rangatiratanga whanui. No te mea ko nga iwi o roto i tenei Kotahitanga kua oati i runga i te whakaaro kotahi kotaki ki te hapai i te ritenga whanui o te whakanui me te pupuri i nga tika o te tangata me nga kaupapa tuturu o nga rangatiratanga o te ora i tenei ao. No te mea e tutaki ai tenei oati he mea nui rawa kia matou te mano tini o te tangata ki enei tikanga rangatira. No reira inaianei: ko te Huihuinga Topu o Te Kotahitanga o Nga Iwi o Te Ao. Ka Paanui I Tenei Whakapuakitanga Whanui O Nga Mana O Te Tangata. Ka meinga nei hei tauira whanui mo nga tikanga hei whainga kia tutaki i te katoa o nga iwi i runga i te whai a tena tangata a tena tangata me nga ropu katoa o roto i nga whakahaere me te pupuri tonu i nga wa katoa i roto i te hinengaro i tenei Whakapuakitanga, me whakapau i te kaha i runga i te ritenga tohutohu me te ako ki te hapai i nga tikanga rangatira: a ma runga hoki i nga whakaritenga e ahu whakamua ana a ia iwi puta noa te ao, kia mau ai te tuturutanga ki te katoa, o te pono o te pupuri me te whakarite i enei ritenga i waenganui o nga iwi o roto i te kotahitanga, hui tahi atu ki nga iwi o nga whenua kei raro i o ratou mana whakahaere. Rarangi 1 Ko te katoa o nga tangata i te whanaungatanga mai e watea ana i nga here katoa; e tauriterite ana hoki nga mana me nga tika. E whakawhiwhia ana hoki ki a ratou te ngakau whai whakaaro me te hinengaro mohio ki te tika me te he, a e tika ana kia meinga te mahi a tetahi ki tetahi me ma roto atu i te wairua o te noho tahi, ano he teina he tuakana i ringa i te whakaaro kotahi. Rarangi 2 E whai mana ana ia tangata kia whiwhi ki te katoa o nga rangatiratanga me nga huarahi whanui o te ao e whakakaupapatia nei i roto i tenei Whakapuakitanga, kaua e araitia ahakoa pewhea, ara i runga i enei ahuatanga e whai ake nei, i te mea he iwi ke, i te ahua kua kiri ke, i te tanetanga i te wahinetanga, i te reo, i te whakapono, i te awhina ropu whakaara ture i tetahi atu kaupapa whakaaro ranei, ahakoa no roto mai i te iwi whanui no tetahi ropu ranei, no te kaupapa pupuri taonga, no te whanaungatanga mai, no tetahi tunga whai-tikanga ranei He apiti atu ki enei, kaua e meinga hei ritenga wehewehe te mea i whakakaupapatia na runga i nga whakahaere ture, i nga mana whanui ranei o te ao kua whakawhiwhia ki tetahi whenua ki tetahi wahanga whenua ranei no reira nei tetahi tangata, ahakoa taua wahanga whenua he whai mana motuhake, kei raro ranei i te Kaitiakitanga, he takiwa whenua ranei kahore nei ona Mana Kawanatanga Motuhake, kei raro ranei i tetahi atu ritenga whakawhaiti i tona mana motuhake. Rarangi 3 Ko ia tangata e whai take ana ki te mauri ora, me watea i nga tikanga tere, me maru hoki ia i raro i te mana o te ture. Rarangi 4 Kaua tetahi tangata e noho pononga a ko nga tikanga whakapononga i te tangata me takahi rawa atu. Rarangi 5 Kaua tetahi tangata e whakamamae noatia e tukua ranei ki nga tikanga whakaiti me nga whiu kahore nei i tika mo te tangata. Rarangi 6 Ko ia tangata e whai mana ana kia mohiotia ki nga wahi katoa he tangata ano ia i te aroaro o te ture. Rarangi 7 E tauriterite ana te katoa ki te aroaro o te ture a e tika ana kia tiakina e te ture, kaua he rereketanga mo tetahi i tetahi. E tika ana te katoa kia rite te tiakina kei kapea e tetahi tikanga e takahi ana i tenei whakapuakitanga, a e tetahi tikanga ranei e whakatara ana kia pera. Rarangi 8 Ko ia tangata e whai take ana kia whiwhi ki tetahi rongoa totika o te ture i na roto mai i nga Kooti Whakawa whai mana mo nga mahi e takahi ana i te tino ritenga o nga mana kua whakaputaina ki a ia e te kaupapa e te ture ranei. Rarangi 9 Kaua tetahi tangata e hopukia noatia e te ringa o te ture e puritia noatia ranei i roto i tetahi whare herehere e peia noatia ranei ki tetahi whenua ke. Rarangi 10 Ko ia tangata e tika ana kia whakatuturutia ki a ia tetahi whakawa tika ki te aroaro o te katoa e tetahi runanga wehekore whakahoahoa ranei, mo runga i te whakataunga i ona tika me nga tikanga hei whakarite mana tae atu hoki ki nga whakapae mona tera kua hara kino ia i raro i te ture. Rarangi 11 1. Ko ia tangata kua whapaea mo tetahi hara e ahei nei whiu e tika ana kia ki ia kahore ia i hara tae noa ki te wa e whakataua ai ae i hara ia e ai ki ta te ture i roto i tetahi whakawatanga i te aroaro o te katoa a i reira i whiwhi ia i te katoa o nga huarahi karo, tautoko hoki i a ia. 2. Kaua tetahi tangata e kiia kua hara mo runga mo tetahi hara e ahei nei kia whiua na runga na tetahi mahi i mahia, na tetahi mea ranei kihai i mahia e ia kaore nei e tika ana kia meinga he hara i raro i te ture o tetahi whenua i te ture ranei o te ao whanui i te wa o taua hara. Kaua hoki tetahi whiu e utaina atu ki te whiu e meinga ana mo taua te hara i taua wa. Rarangi 12 Kaua tetahi tangata e whakararuraru pokonoatia, tana whanau, tona kainga, ana pukapuka ranei, e takahi ranei i tona ingoa nui me tona ingoa pai. Ko ia tangata e ahei ana ma te ture e tiaki kei pa enei ahua whakararu me enei tukinotanga. Rarangi 13 1. Ko ia tangata e whai-tika mo ana haere katoa me ona wahi noho tuturu ai i roto i nga rohe o tona whenua. 2. Ko ia tangata e whai-tika kia whakarere i tetahi whenua, ahakoa ko tona whenua ake, a me te hoki ano ki tena whenua tupu. Rarangi 14 1. Ko ia tangata e whai-tika ana kia rapu kia whiwhi hoki ki tetahi oranga ngakau ki etahi atu whenua ina whanatu ia kia pahemo i nga tukino mona. 2. Ko tenei tika e kore e ahei kia inoitia mo runga i te take whakawhiu i tupu pono ake na etahi hara kahore nei no nga ropu hanga ture, a na roto mai ranei i etahi mahi e peka ke ana i te ahuatanga me nga kaupapa tuturu o te Kotahitanga o nga Mana Nunui o te Ao. Rarangi 15 Ko ia tangata e whai tika ana ki tetahi iwi tuturu mona. Kaua tetahi tangata e meinga kia takirihia atu e te ringa kaha i tona iwi tuturu, a kaua hoki e araia ina mea ia ki tetahi atu iwi hei iwi tuturu mona. Rarangi 16 1. Ko nga tane me nga wahine kua eke nei nga tau ki te pakehatanga, e whai-tika ana kia moe tane, wahine hoki, a kia whakatupu uri ki te ao, a kaua e araia tenei tika na runga ï te mea he momo tangata ke atu, he iwi ke, he whakapono ke ranei. E whai mana, ana ratou kia tauriterite te tika i runga i te marena i te wa e noho ana he tane he wahine a tae noatia te wa e wehe tuturu ai. 2. Ko te maramatanga me meinga i urutomotia i runga i te whakaaetanga watea, tuturu hoki a te tane me te wahine e marenatia ana. 3. Ko te whanau te hunga tuturu pupuri pono hoki i te kaupapa tika o te iwi, a e tino tika ana kia tiakina e te iwi me te Motu katoa. Rarangi 17 1. Ko ia tangata e whai-tika ana kia whiwhi ki ona taonga ake, kia whiwhi tahi ranei ratou ko etahi atu. 2. Kaua tetahi tangata e murua e te ringa kaha i ona taonga ake. Rarangi 18 1. Ko ia tangata e whai-tika ana ki ona ake whakaaro, o tona hinengaro me tona nei whakapono; e tapiritia ana hoki ki a ia te mana kia watea ia ki te whakauru atu ki tetahi atu whakapono, hahi ranei, a me watea hoki, ki a ia anake ki a ia ranei me etahi atu ki te aroaro o te katoa, ki tetahi wahi wehi ranei, te mana ki te whakarite i tona whakapono, hahi ranei, i runga i te ritenga ako atu i etahi, i whakahaere ranei i ona ritenga, i te karakia me te whakatutuki i ona ahuatanga. Rarangi 19 Ko ia tangata e whai-tika ana ki tona whakaaro i kite ai, a ki te whakapuaki hoki i ona whakaaro; ko tenei tika e tapiritia mai ana te ahei ona ki te pupuri i tana i whakaaro ai, a kaua hoki a ia e whakararurarutia a ka ahei hoki a ia ki te rapu, ki te tango mai me te tuku atu i nga whakamarama me nga rapunga whakaaro o te hinengaro, ahakoa pewhea te huarahi, i nawhea atu ranei i runga i nga rohe whakatakoto a te tangata. Rarangi 20 1. Ko ia tangata e whai-tika ana kia watea ia ki te whakatu hui, ropu ranei, i runga i te ritenga pupuri i te maungarongo. 2. Kaua tetahi tangata e akina kia uru noa ki tetahi ropu. Rarangi 21 1. Ko ia te tangata e whai-tika ana kia whai wahi ki nga whakahaere kawanatanga o tona whenua, a ia tonu a ma roto ata ranei i nga mangai i ata waitohutia. 2. Ko ia tangata e whai-tika ana kia tauriterite te huarahi atu mo te uru ki nga mahi mo te katoa i tona nei whenua. 3. Ko ta te iwi i whakatau ai me meinga hei kaupapa mo te mana o te kawanatanga; ko tenei whakatau me meinga kia whakapuakina ia wa ia wa i runga i te pooti tika he mea atu tuku ki te katoa i runga i te mana pooti tauriterite o tetahi tangata, a me meinga hoki na te pooti puku a na tetahi tikanga ranei i rite atu ki tera te watea o te tangata ki te pooti ki tana i whakaaro ai. Rarangi 22 Ko ia tangata, i te mea no roto ia i te iwi, e whakatika ana kia whiwhi ki nga tikanga toko i te ora mo te iwi, a e tika ana kia whakaritea atu ki a ia, i na roto atu i nga whakahaere whanui a tona iwi, i na roto mai ranei i nga whakakotahitanga o nga mahi a nga iwi o te ao a kia rite hoki ki te kaha o nga whakahaere a-ropu o roto ia iwi ia iwi te oranga tinana te noho i roto i te iwi., me nga tika ki nga whakahaere hapai i te mauri o te tangata, e tika nei kaua e hapa te tangata i enei mea hei pupuri i tona ihi me te whakawatea hoki i te tupu pakari o te tu-rangatira o te tangata. Rarangi 23 1. Ko ia tangata e whai-tika ana kia whiwhi ki te mahi, kia watea hoki ki te whawha ki tana mahi i hiahia ai, kia tika kia pai hoki nga ahuatanga o tana mahi a kia tiakina hoki kei noho kare mahi ia. 2. Ko ia tangata, ahakoa pewhea, e tika ana kia whiwhi ki te utu taurite mo nga mahi i tauriterite nga ahuatanga. 3. Ko ia tangata e mahi ana e whai-tika ana kia utua ki te utu tika pai hoki, kia ahei ai te whiwhi ona me tana whanau ki te oranga e tika nei hei whakaara i te ua o te tangata i te ao nei; a me tapiri atu ki enei, ina kitea e tika ana kia pera, etahi atu awhina o roto i nga whakahaere toko i te ora mo te iwi. 4. Ko ia tangata e ahei ana ki te waihanga ki te whakauru ranei ki tetahi ropu kaimahi hei tiaki i nga ahuatanga katoa e pa ana ki nga huarahi mahi mona. Rarangi 24 Ko ia tangata e whai-tika ana kia okioki, noho noaiho ranei i ona wa ano; ka tapiritia ki tenei, me meinga ko ona haora mahi me whakawhaiti ano ki nga haora e tika ana, me whiwhi hoki ia wa ia wa ki nga ra kore mahi i runga i te ritenga haere tonu o te utu mona i ana ra. Rarangi 25 1. Ko ia tangata e whai-tika ana kia whiwhi ki te oranga e hangai ana ki te oranga totika mo tona tinana me ona ahuatanga katoa, ona ake me tana whanau; i te kai. i tekakahu, i te whare, i te rongoa me nga whakaora i nga mauiui o te tinana, a tae atu ki nga huarahi toko i te ora mo te iwi e tika ana, a me whiwhi hoki ai i te tika, me te manaakitanga tuturu mona ina tupono mai nga wa kore mahi, nga mauiui o te tinana, nga wharanga, te pouarutanga, te kaumatuatanga, a te kore ranei e whiwhi i te oranga mona i nga runga mai i etahi ahuatanga kaore nei e taea e ia te pewhea ake. 2. Ko nga wahine whanau me te hunga tamariki e tika ana kia ata whakaarohia kia manaakitia hoki. Ko te katoa o nga tamariki, ahakoa i whanau mai i te hunga i te marenatia kahore ranei i marenatia, me meinga kia rite tahi te whiwhi ki nga awhina o nga ritenga toko i te ora mo te iwi. Rarangi 26 1. Ko ia tangata e tika ana kia watea ki a ia nga huarahi o te matauranga. Ko nga huarahi o nga akoranga me noho kore utu, otira i nga timatanga atu me ona kaupapa tuturu. Ko nga timatanga atu o nga huarahi akoranga me meinga kia utaina ki te katoa, kaua ma te hiahia noa o te tangata. Ko nga akoranga mo nga mahi-a-ringa me nga mahi-a-hinengaro me meinga kia whanui te horo ki te katoa, a ko nga akoranga ki nga taumata ikeike o te matauranga me rite tahi te watea ki te katoa i na runga ano ra i te kitea o te totika o te tangata. 2. Ko nga huarahi o te akoranga me whakaanga atu ki nga wahi e puta topu mai ai nga hua totika o te tangata, kia meinga ai hoki hei kaupapa whakapakari i nga mana o te tangata me nga tino kaupapa o te rangatiratanga o tona oranga i tenei ao. Me meinga i tenei ritenga kia ata matatau tetahi ki tetahi, kia watea i te ngakau wene, kia noho hoki i runga i te whakahoahoa tetahi iwi ki tetahi iwi, tetahi momo tangata me tetahi momo tangata me tetahi ropu whakapono ki tetahi atu ropu whakapono, a me meinga hoki kia hapai i nga whakahaere a te Kotahitanga o nga iwi Nunui o te Ao he mea a mau ai te maungarongo ki te mata o te whenua. 3. Kei nga matua te mana tuatahi ki te tohu i te ahua o nga akoranga hei tuku ki a ratou tamariki. Rarangi 27 1. Ko ia tangata e whai-tika ana kia watea tona huarahi mo te whakauru atu ki nga whakahaere hapai i te hinengaro tangata i roto i te iwi, kia whiwhi hoki ki nga oranga ngakau o roto i nga mahi ataahua, a kia pa tahi atu ki nga whakahaere hohonu o te matauranga e ahu whakamua atu ana, me ona hua katoa. 2. Ko ia tangata e whai-tika ana kia ata tiakina kia puta ano ki a ia nga hua o nga mea oranga ngakau, oranga tinana ranei, i na roto mai nei i nga mahi o te hohohutanga o te matauranga, i nga pukapuka whai hua i tuhia, i nga mahi ataahua ranei nana ake nai i whakapuawai ki te ao. Rarangi 28 Ko ia tangata e whai-tika ana ki nga ritenga o te noho pai o te iwi me te ao katoa, ma reira nei e tino tuturu ai nga tika me nga rangatiratanga kua whakararangitia nei ki roto i tenei Whakapuakitanga. Rarangi 29 1. Ko ia tangata me mahi i ana mahi mo te iwi, ma reira anake nei e watea ai, e tutuki tuturu ai hoki te waihangatanga o tona hinengaro. 2. I te wa i whakarite ana ia i ona tika me ona rangatiratanga, ko ia tangata me meinga ko nga ara anake mona me ma roto i nga whakatau a te ture, me motuhake hoki aua arai hei mea a mau ai e mohiotia ai e whakanuia ai hoki nga tika me nga rangatiratanga e etahi atu tangata, a hei mea hoki e tutuki ai nga ritenga pono o te noho kore-hara, o te noho i te rangimarie o te katoa me te painga whanui ki nga iwi e noho ana i raro i te mana kawanatanga o te katoa o nga iwi o tetahi whenua. 3. Ko enei tika me enei rangatiratanga kaua rawa e meinga kia whakahaerea i runga i etahi tikanga me etahi atu kaupapa e peka ke ana i a te Kotahitanga o nga Iwi Nunui o te Ao i mea ai. Rarangi 30 Kahore rawa i roto i tenei Whakapuakitanga tetahi mea e ahei ana kia whakamoaritia tera kei tetahi Mana Kawanatanga, kei tetahi ropu, kei tetahi tangata ranei tetahi mana ki te whakahaere i tetahi ritenga, ki te mahi ranei i tetahi mahi e anga atu ana hei tikanga turaki i tetahi o nga mano me nga rangatiratanga e mau ake nei.


Cite this as: Anton Antonov, "Simplified Machine-Learning Workflow #8" from the Notebook Archive (2020), https://notebookarchive.org/2020-09-55st5h2

Download

