Neural Networks: An Introduction
Neural Networks: An Introduction
Neural Networks: An Introduction
0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
|
|
|
|
|
|
Layer Type | Layers |
Basic Layers | LinearLayer | ElementwiseLayer | SoftmaxLayer |
Elementwise Computation Layers | ElementwiseLayer | ThreadingLayer | ConstantTimesLayer | ConstantPlusLayer |
Convolution and Filtering Layers | ConvolutionLayer | DeconvolutionLayer | PoolingLayer | ResizeLayer | SpatialTransformationLayer |
Training Optimization Layers | ImageAugmentationLayer | NormalizationLayer | DropoutLayer | LocalResponseNormalizationLayer |
Structure Manipulation Layers | CatenateLayer | FlattenLayer | ReshapeLayer | ReplicateLayer | PaddingLayer | PartLayer | TransposeLayer| AppendLayer | PrependLayer|ExtractLayer |
Array Operation Layers | ConstantArrayLayer | SummationLayer | TotalLayer | AggregationLayer | DotLayer|OrderingLayer |
Recurrent Layers | BasicRecurrentLayer | GatedRecurrentLayer | LongShortTermMemoryLayer |
Sequence-Handling Layers | EmbeddingLayer | SequenceLastLayer | SequenceReverseLayer | SequenceMostLayer | SequenceRestLayer | AttentionLayer | UnitVectorLayer |
uniniti aliz ed |
|
|
|
|
uniniti aliz ed |
|
|
|
|
|