Rediscovering Kepler’s Third Law
Author
Stephen Wolfram
Title
Rediscovering Kepler’s Third Law
Description
Our Solar System
Category
Educational Materials
Keywords
URL
http://www.notebookarchive.org/2019-08-98zx44w/
DOI
https://notebookarchive.org/2019-08-98zx44w
Date Added
2019-08-20
Date Last Modified
2019-08-20
File Size
51. kilobytes
Supplements
Rights
Redistribution rights reserved



Rediscovering Kepler’s Third Law
Rediscovering Kepler’s Third Law
Our Solar System
Our Solar System
Find the orbit period and semimajor axis for all the planets in our Solar System:
In[]:=
EntityValue
,{"OrbitPeriod","SemimajorAxis"}
![]() | planets | PLANETS |
Out[]=
,,,,,,{,},{,},{,},{,},{,}
87.96926
days
0.38709893
au
224.70080
days
0.72333199
au
365.25636
days
1.00000011
au
1.8808476
a
1.52366231
au
11.862615
a
5.20336301
au
29.447498
a
9.53707032
au
84.016846
a
19.19126393
au
164.79132
a
30.06896348
au
Make a log-log plot:
In[]:=
ListLogLogPlot[%]
Out[]=
The fact that it’s close to a straight line implies a power law relationship.
Find a formula for the semimajor axis as a function of the period:
In[]:=
FindFormula[%%,p]
Out[]=
0.0135544
0.7
QuantityMagnitude[p,Days]
au
There’s an exponent of 0.7, close to the 2/3 of Kepler’s third law.
Exoplanets
Exoplanets
Pick 10 random exoplanets:
In[]:=
RandomEntity["Exoplanet",10]
Out[]=
,,,,,,,,,
Kepler 603 d
Kepler 52 c
Kepler 1207 b
Kepler 436 c
HATS-36 b
Kepler 1031 b
EPIC 211945201 b
Kepler 869 b
Kepler 1283 b
Kepler 1392 b
Only a few have known semimajor axes:
In[]:=
EntityValue[%,{"OrbitPeriod","SemimajorAxis"}]
Out[]=
,Missing[NotAvailable],,Missing[NotAvailable],,Missing[NotAvailable],,Missing[NotAvailable],{,},{,Missing[NotAvailable]},,,,Missing[NotAvailable],,Missing[NotAvailable],,Missing[NotAvailable]
6.22138751
days
16.39622470
days
13.69174268
days
16.80864363
days
100.2731
h
0.0523
au
29.4493727
h
19.50556
days
0.1493
au
40.45646644
days
12.95496499
days
15.15141028
days
FInd results for 100 random exoplanets:
In[]:=
data=EntityValue[RandomEntity["Exoplanet",100],{"OrbitPeriod","SemimajorAxis"}];
Plot semimajor axis against orbit period:
In[]:=
ListLogLogPlot[data]
Out[]=
Find a fit to the data, removing all cases in the data that contain missing values:
In[]:=
FindFormula[DeleteMissing[data,1,1],p]
Out[]=
0.672582
QuantityMagnitude[p,JulianYears]
au
The exponent is extremely close to 2/3, validating Kepler’s third law.


Cite this as: Stephen Wolfram, "Rediscovering Kepler’s Third Law" from the Notebook Archive (2019), https://notebookarchive.org/2019-08-98zx44w

Download

