Minimal Absorption Index for a 2-Dimensional Simplex
Author
Alexey Ukhalov
Title
Minimal Absorption Index for a 2-Dimensional Simplex
Description
Wolfram Language code for finding a minimal absorption index for a 2-dimensional simplex
Category
Academic Articles & Supplements
Keywords
simplex, absorption index, convex geometry
URL
http://www.notebookarchive.org/2020-02-b23e65i/
DOI
https://notebookarchive.org/2020-02-b23e65i
Date Added
2020-02-24
Date Last Modified
2020-02-24
File Size
13.7 kilobytes
Supplements
Rights
CC BY 4.0



Minimal Absorption Index for a 2-Dimensional Simplex
Definitions, basic facts and formulas can be found in the following papers
In English:
Nevskii, M.V. & Ukhalov, A.Y. On Minimal Absorption Index for an n-Dimensional Simplex.
Automatic Control and Computer Sciences. 2018. Volume 52, Issue 7, pp 680–687.
https://doi.org/10.3103/S0146411618070209
Nevskii M., and Ukhalov A. Perfect simplices in R^5.
Beitrage zur Algebra und Geometrie / Contributions to Algebra and Geometry. 2018. Vol 59, Issue 3, pp. 501-521.
In Russian:
Nevskii M.V., Ukhalov A.Y. On Minimal Absorption Index for an n-Dimensional Simplex.
Modeling and Analysis of Information Systems. 2018. Volume 25, No 1, pp. 140-150. (In Russ.)
https://doi.org/10.18255/1818-1015-2018-1-140-150
See also book (in Russian)
Nevskii, M.\,V. Geometric estimates in polynomial interpolation. P. G. Demidov Yaroslavl State University, Yaroslavl, 2012.
In English:
Nevskii, M.V. & Ukhalov, A.Y. On Minimal Absorption Index for an n-Dimensional Simplex.
Automatic Control and Computer Sciences. 2018. Volume 52, Issue 7, pp 680–687.
https://doi.org/10.3103/S0146411618070209
Nevskii M., and Ukhalov A. Perfect simplices in R^5.
Beitrage zur Algebra und Geometrie / Contributions to Algebra and Geometry. 2018. Vol 59, Issue 3, pp. 501-521.
In Russian:
Nevskii M.V., Ukhalov A.Y. On Minimal Absorption Index for an n-Dimensional Simplex.
Modeling and Analysis of Information Systems. 2018. Volume 25, No 1, pp. 140-150. (In Russ.)
https://doi.org/10.18255/1818-1015-2018-1-140-150
See also book (in Russian)
Nevskii, M.\,V. Geometric estimates in polynomial interpolation. P. G. Demidov Yaroslavl State University, Yaroslavl, 2012.
A={{x1,y1,1},{x2,y2,1},{x3,y3,1}};L=Inverse[A];l[i_,x_,y_]:=L[[1]][[i]]*x+L[[2]][[i]]*y+L[[3]][[i]];T=Flatten[Table[-l[i,x,y],{i,1,3,1},{x,0,1,1},{y,0,1,1}]];ksi[x1_,y1_,x2_,y2_,x3_,y3_]:=1+3*Max[T];
res=NMinimize[{ksi[x1,y1,x2,y2,x3,y3],0≤x1&&x1≤1&&0≤y1&&y1≤1&&0≤x2&&x2≤1&&0≤y2&&y2≤1&&0≤x3&&x3≤1&&0≤y3&&y3≤1},{x1,y1,x2,y2,x3,y3}]
{2.34164,{x11.,y10.618034,x20.381966,y20.,x30.,y31.}}
ksi2=res[[1]];S={{x1,y1},{x2,y2},{x3,y3}}/.res[[2]];Ct=(S[[1]]+S[[2]]+S[[3]])/3;ksi2S={Ct+(S[[1]]-Ct)*ksi2,Ct+(S[[2]]-Ct)*ksi2,Ct+(S[[3]]-Ct)*ksi2};Graphics[{Thickness[0.001],Line[{{0,0},{1,0},{1,1},{0,1},{0,0}}],FaceForm[None],EdgeForm[Directive[Thickness[0.01],Black]],Simplex[{S[[1]],S[[2]],S[[3]]}],EdgeForm[Directive[Thickness[0.01],Red]],Simplex[{ksi2S[[1]],ksi2S[[2]],ksi2S[[3]]}]},PlotRange{{-1,2},{-1,2}},AxesTrue,Ticks{{1},{1}},TicksStyleDirective["Label",17],LabelStyleDirective[Black,17],AxesLabel{"x","y"},AxesStyleDirective[Black,Thickness[0.005]]]


Cite this as: Alexey Ukhalov, "Minimal Absorption Index for a 2-Dimensional Simplex" from the Notebook Archive (2020), https://notebookarchive.org/2020-02-b23e65i

Download

