Extractable quantum work from a twomode Gaussian state in a noisy channel
Author
Alexei Zubarev
Title
Extractable quantum work from a twomode Gaussian state in a noisy channel
Description
Program for estimation of extracted work and Szilard engine efficiency.
Category
Academic Articles & Supplements
Keywords
Quantum Information, Quantum Thermodynamics, Szilard Engine
URL
http://www.notebookarchive.org/2022-01-c07ri99/
DOI
https://notebookarchive.org/2022-01-c07ri99
Date Added
2022-01-26
Date Last Modified
2022-01-26
File Size
3.21 megabytes
Supplements
Rights
CC BY 4.0
Download
Open in Wolfram Cloud
This file contains supplementary data for Marina Cuzminschi, Alexei Zubarev and Aurelian Isar, “Extractable quantum work from a two-mode Gaussian state in a noisy channel,” Scientific Reports, 11(1) 2021 24286. https://doi.org/10.1038/s41598-021-03752-4.
Extractable Quantum Work from a Two-Mode Gaussian State In a Noisy Channel (Resonant Case)
Extractable Quantum Work from a Two-Mode Gaussian State In a Noisy Channel (Resonant Case)
Alexei Zubarev
k=1;m=1;(*WesetBoltzmannconstantandmasstoone.*)λ=0.1;(*λ-dissipationparameter*)
a[r_,n1_,n2_]=n1+n2+Cosh[2r];b[r_,n1_,n2_]=n1+n2+Cosh[2r];c[r_,n1_,n2_]=(n1+n2+1)Sinh[2r];σ0[r_,n1_,n2_]=
;(*Herewedefinedthecovariancematrixforinitialtimeintermsofsqueezingparameterr,averagenumbersofthermalphotonsofthefirstandsecondmodecorrespondingly(and).Theinitialstateisasqueezedthermalstate.*)nth[T_]=Coth-1;(*istheaveragenumberofthermalphotonsoftheresourcestate.Weconsideraresonantcasefirst(Thefrequenciesofthemodesare==1).*)
2
Cosh[r]
2
Sinh[r]
1
2
2
Sinh[r]
2
Cosh[r]
1
2
1
2
a[r,n1,n2] | 0 | c[r,n1,n2] | 0 |
0 | a[r,n1,n2] | 0 | -c[r,n1,n2] |
c[r,n1,n2] | 0 | b[r,n1,n2] | 0 |
0 | -c[r,n1,n2] | 0 | b[r,n1,n2] |
n
1
n
2
1
2
1
2T
n
th
ω
1
ω
2
Nn[T_,Rr_]=nth[T](+)+;(*Rristhesqueezingparameterofthenoisychannel.*)MRe[T_,Rr_,ϕ_]=-(2nth[T]+1)Cosh[Rr]Sinh[Rr]Cos[ϕ];MIm[T_,Rr_,ϕ_]=-(2nth[T]+1)Cosh[Rr]Sinh[Rr]Sin[ϕ];(*NoisychannelisdescribedintermsofitsqueezingparameterRr,temperatureTandthephaseϕ.*)
2
Cosh[Rr]
2
Sinh[Rr]
2
Sinh[Rr]
σ∞[T_,Rr_,ϕ_]=
;(*Herewedefinetheasymptoticcovariancematrixfortimet=∞*)σa∞[T_,Rr_,ϕ_]=
;σb∞[T_,Rr_,ϕ_]=
;σc∞[T_,Rr_,ϕ_]=
;(*Herearegiventhetheasymptoticcovariancematricesformode1((∞)),thesecondmode((∞)),andcorrelationsbetweenthem((∞)).*)
1 2 | MIm[T,Rr,ϕ] | 0 | 0 |
MIm[T,Rr,ϕ] | 1 2 | 0 | 0 |
0 | 0 | 1 2 | MIm[T,Rr,ϕ] |
0 | 0 | MIm[T,Rr,ϕ] | 1 2 |
σ∞[T,Rr,ϕ][[1,1]] | σ∞[T,Rr,ϕ][[1,2]] |
σ∞[T,Rr,ϕ][[2,1]] | σ∞[T,Rr,ϕ][[2,2]] |
σ∞[T,Rr,ϕ][[3,3]] | σ∞[T,Rr,ϕ][[3,4]] |
σ∞[T,Rr,ϕ][[4,3]] | σ∞[T,Rr,ϕ][[4,4]] |
σ∞[T,Rr,ϕ][[1,3]] | σ∞[T,Rr,ϕ][[1,4]] |
σ∞[T,Rr,ϕ][[2,3]] | σ∞[T,Rr,ϕ][[2,4]] |
σ
a
σ
b
σ
c
σ[t_,r_,n1_,n2_,T_,Rr_,ϕ_]=Exp[-λt]σ0[r,n1,n2]+(1-Exp[-λt])σ∞[T,Rr,ϕ];(*Thetimeevolutionofthetwo-modestateinanoisychannelispresentedabove.*)
σa[t_,r_,n1_,n2_,T_,Rr_,ϕ_]=
;σb[t_,r_,n1_,n2_,T_,Rr_,ϕ_]=
;σc[t_,r_,n1_,n2_,T_,Rr_,ϕ_]=
;(*Thematrixoftheandmodesaredefined,togetherwiththematrixoftheircorrelations.*)
σ[t,r,n1,n2,T,Rr,ϕ][[1,1]] | σ[t,r,n1,n2,T,Rr,ϕ][[1,2]] |
σ[t,r,n1,n2,T,Rr,ϕ][[2,1]] | σ[t,r,n1,n2,T,Rr,ϕ][[2,2]] |
σ[t,r,n1,n2,T,Rr,ϕ][[3,3]] | σ[t,r,n1,n2,T,Rr,ϕ][[3,4]] |
σ[t,r,n1,n2,T,Rr,ϕ][[4,3]] | σ[t,r,n1,n2,T,Rr,ϕ][[4,4]] |
σ[t,r,n1,n2,T,Rr,ϕ][[1,3]] | σ[t,r,n1,n2,T,Rr,ϕ][[1,4]] |
σ[t,r,n1,n2,T,Rr,ϕ][[2,3]] | σ[t,r,n1,n2,T,Rr,ϕ][[2,4]] |
st
1
nd
2
Ref[θ_]=Cos[θ]IdentityMatrix[2]-Sin[θ]
;(*θisthemeasurementangle.*)γπb[θ_,μ_]=Ref[θ].
.Transpose[Ref[θ]];(*istheseedofmeasurementmatrix.μ=0Homodynedetection,μ=1Heterodynedetection*)
0 | - |
| 0 |
μ 2 | 0 |
0 | 1 2μ |
π
b
γ
σaπb[t_,r_,n1_,n2_,T_,Rr_,ϕ_,θ_,μ_]=σa[t,r,n1,n2,T,Rr,ϕ]-σc[t,r,n1,n2,T,Rr,ϕ].Inverse[σb[t,r,n1,n2,T,Rr,ϕ]+γπb[θ,μ]].Transpose[σc[t,r,n1,n2,T,Rr,ϕ]];(*isthecovariancematrixofthestateofthefirstmodereachedafterthemeasurementofthemodehasbeenperformed.Thestatechangesduetoback-reaction.*)
σ
π
b
a
nd
2
W[t_,r_,n1_,n2_,T_,Rr_,ϕ_,θ_,μ_]=Log;(*Thequentumworkextractedwhenthestateofthemode1reachesthenewequilibriumwiththenoisychannelintermsofRenyientropy.*)Δ[t_,r_,n1_,n2_,T_,Rr_,ϕ_]=4Det[σa[t,r,n1,n2,T,Rr,ϕ]]+4Det[σb[t,r,n1,n2,T,Rr,ϕ]]+8Det[σc[t,r,n1,n2,T,Rr,ϕ]];(*Seralianofthetwo-modestates.*)(*-Δν+Det[σ]=0*)ν1[t_,r_,n1_,n2_,T_,Rr_,ϕ_]=Sqrt;ν2[t_,r_,n1_,n2_,T_,Rr_,ϕ_]=Sqrt;(*Simplecticeigenvaluesofthetwo-modestates.*)S[t_,r_,n1_,n2_,T_,Rr_,ϕ_]=Log2-Log2+Log2-Log2;(*VonNeumannEntropyofatwo-modestate.*)Werasnou[t_,r_,n1_,n2_,T_,Rr_,ϕ_]=TS[t,r,n1,n2,T,Rr,ϕ];Wmnou[r_,n1_,n2_,T_,Rr_,ϕ_]:=FindMaximum[{Werasnou[t,r,n1,n2,T,Rr,ϕ],0<20<100},{t,1}][[1]](*Wetakethemaximalentropyintime.*)ηnou[t_,r_,n1_,n2_,T_,Rr_,ϕ_,θ_,μ_]:=;(*Theentropyisobtained*)
T
2
Det[σa[t,r,n1,n2,T,Rr,ϕ]]
Det[σaπb[t,r,n1,n2,T,Rr,ϕ,θ,μ]]
2
ν
Δ[t,r,n1,n2,T,Rr,ϕ]-Sqrt[-64Det[σ[t,r,n1,n2,T,Rr,ϕ]]]
2
Δ[t,r,n1,n2,T,Rr,ϕ]
2
Δ[t,r,n1,n2,T,Rr,ϕ]+Sqrt[-64Det[σ[t,r,n1,n2,T,Rr,ϕ]]]
2
Δ[t,r,n1,n2,T,Rr,ϕ]
2
ν1[t,r,n1,n2,T,Rr,ϕ]+1
2
ν1[t,r,n1,n2,T,Rr,ϕ]+1
2
ν1[t,r,n1,n2,T,Rr,ϕ]-1
2
Abs[ν1[t,r,n1,n2,T,Rr,ϕ]-1]
2
ν2[t,r,n1,n2,T,Rr,ϕ]+1
2
ν2[t,r,n1,n2,T,Rr,ϕ]+1
2
ν2[t,r,n1,n2,T,Rr,ϕ]-1
2
Abs[ν2[t,r,n1,n2,T,Rr,ϕ]-1]
2
W[t,r,n1,n2,T,Rr,ϕ,θ,μ]
Wmnou[r,n1,n2,T,Rr,ϕ]
In[]:=
PlotNIntegrate[W[0,1.8,0,0,T,0.2,π/4,θ,0],{θ,0,π}],NIntegrate[W[1,1.8,0,0,T,0.2,π/4,θ,0],{θ,0,π}],NIntegrate[W[5,1.8,0,0,T,0.2,π/4,θ,0],{θ,0,π}],{T,0,5},Frame->True,FrameLabel{"T","W"},FrameStyle26,ImageSize1000,PlotStyle{Red,Green,Blue},PlotLegendsPlaced[{Style["t=0",FontSize26],Style["t=1",FontSize26],Style["t=5",FontSize26]},Above]
1
π
1
π
1
π
Out[]=
| |||||||
In[]:=
PlotNIntegrate[W[t,1.8,0,0,0.1,0.2,π/4,π/4,0],{θ,0,π}],NIntegrate[W[t,1.8,0,0,1,0.2,π/4,π/4,0],{θ,0,π}],NIntegrate[W[t,1.8,0,0,2,0.2,π/4,π/4,0],{θ,0,π}],{t,0,5},Frame->True,FrameLabel{"t","W"},FrameStyle36,ImageSize1000,PlotStyle{Red,Green,Blue},PlotLegendsPlaced[{Style["T=0.1",FontSize30],Style["T=1",FontSize30],Style["T=2",FontSize30]},Above]
1
π
1
π
1
π
Out[]=
Plot[{W[0,1.8,0,0,0.1,Rr,π/4,π/4,0],W[0,1.8,0,0,1,Rr,π/2,π/4,0],W[0,1.8,0,0,2,Rr,π/4,π/4,0]},{Rr,0,5},Frame->True,FrameLabel{"R","W"},FrameStyle22,ImageSize1000,PlotStyle{Red,Green,Blue},PlotLegendsPlaced[{Style["t=0",FontSize26],Style["t=1",FontSize26],Style["t=5",FontSize26]},Above]]
Out[]=
(*t,r,n1,n2,T,Rr,ϕ,θ,μ*)
In[]:=
PlotNIntegrate[W[0,r,0,0,0.1,0.2,π/4,θ,0],{θ,0,π}],NIntegrate[W[1,r,0,0,0.1,0.2,π/4,θ,0],{θ,0,π}],NIntegrate[W[2,r,0,0,0.1,0.2,π/4,θ,0],{θ,0,π}],{r,0,1.8},Frame->True,FrameLabel{"r","W"},FrameStyle36,ImageSize1000,PlotStyle{Red,Green,Blue},PlotLegendsPlaced[{Style["t=0",FontSize30],Style["t=1",FontSize30],Style["t=2",FontSize30]},Above]
1
π
1
π
1
π
Out[]=
(*W[t,r,n1,n2,T,Rr,ϕ,θ,μ]*)
Plot3DNIntegrate[W[t,1.8,0,0,T,0.2,π/4,θ,0],{θ,0,π}],{t,0,5},{T,0,5},PlotRangeAll,AxesLabel{"t","T","W"},AxesStyle36,PlotPoints75,ImageSize1000,ViewPoint{4,-10,5}
1
π
Out[]=
In[]:=
Plot3DNIntegrate[ηnou[t,1.8,0,0,T,0.2,π/4,θ,0],{θ,0,π}],{t,0.1,5},{T,0.1,5},PlotRangeAll,AxesLabel{"t","T","η"},AxesStyle36,PlotPoints75,ImageSize1000,ViewPoint{4,-10,5},PlotStyleCyan
1
π
In[]:=
Plot3DNIntegrate[ηnew[t,1.8,0,0,T,0.2,π/4,θ,0],{θ,0,π}],{t,0.0001,5},{T,0.0001,5},PlotRangeAll,AxesLabel{"t","T","η"},AxesStyle36,PlotPoints75,ImageSize1000,ViewPoint{4,-10,5},PlotStyleCyan
1
π
Out[]=
(*W[t,r,n1,n2,T,Rr,ϕ,θ,μ]*)
In[]:=
Plot3D[W[t,1.8,0,0,3,0.2,π/4,θ,0],{t,0,5},{θ,0,2π},PlotRangeAll,AxesLabel{"t","θ","W"},AxesStyle36,PlotPoints75,ImageSize1000,ViewPoint{4,-10,5}]
Out[]=
(*W[t,r,n1,n2,T,Rr,ϕ,θ,μ]*)
In[]:=
Plot3DNIntegrate[W[t,1.8,0,0,3,0.2,ϕ,θ,0],{θ,0,π}],{t,0,5},{ϕ,0,6π},PlotRangeAll,AxesLabel{"t","ϕ","W"},AxesStyle36,ImageSize1000,ViewPoint{4,-10,5}
1
π
Out[]=
In[]:=
Plot3DNIntegrate[W[t,1.8,0,0,3,0.2,0,θ,μ],{θ,0,π}],{t,0,5},{μ,0,6},PlotRangeAll,AxesLabel{"t","μ","W"},AxesStyle36,ImageSize1000,ViewPoint{4,-10,5}
1
π
Out[]=
In[]:=
Plot3DNIntegrate[ηnew[t,1.8,0,0,3,0.2,0,θ,μ],{θ,0,π}],{t,0,5},{μ,0,6},PlotRangeAll,AxesLabel{"t","μ","η"},AxesStyle36,ImageSize1000,ViewPoint{4,-10,5},PlotStyleCyan
1
π
Out[]=
(*t,r,n1,n2,T,Rr,ϕ,θ,μ*)
In[]:=
Plot3DNIntegrate[W[t,r,0,0,3,0.2,0,θ,0],{θ,0,π}],{t,0,5},{r,0,1.8},PlotRangeAll,AxesLabel{"t","r","W"},AxesStyle36,ImageSize1000,ViewPoint{4,-10,5}
1
π
Out[]=
In[]:=
Plot3DNIntegrate[ηnew[t,r,0,0,3,0.2,0,θ,0],{θ,0,π}],{t,0,5},{r,0,1.8},PlotRangeAll,AxesLabel{"t","r","η"},AxesStyle36,ImageSize1000,ViewPoint{4,-10,5},PlotStyleCyan
1
π
Out[]=
In[]:=
Plot3D[W[t,1.8,n1,0,3,0.2,0,π/4,1],{t,0,5},{n1,0,3},PlotRangeAll,AxesLabel{"t","","W"},AxesStyle36,PlotPoints75,ImageSize1000,ViewPoint{4,-10,5}]
n
1
Out[]=
In[]:=
Plot3D[ηnew[t,1.8,n1,0,3,0.2,0,π/4,1],{t,0,5},{n1,0,3},PlotRangeAll,AxesLabel{"t","","η"},AxesStyle36,PlotPoints75,ImageSize1000,ViewPoint{4,-10,5},PlotStyleCyan]
n
1
Out[]=
Plot3DNIntegrate[W[t,1.8,0,n2,3,0.2,0,π/4,1],{t,0,5}],{n2,0,3},PlotRangeAll,AxesLabel{"t","n2","W"},AxesStyle22,PlotPoints75,ImageSize1000,ViewPoint{4,-10,5}
1
π
Out[]=
(*W[t,r,n1,n2,T,Rr,ϕ,θ,μ]*)
In[]:=
Plot3DNIntegrate[W[t,1.8,0,0,3,Rr,0,θ,0],{θ,0,π}],{t,0,5},{Rr,0,2},PlotRangeAll,AxesLabel{"t","R","W"},AxesStyle36,ImageSize1000,ViewPoint{4,-10,5}
1
π
Out[]=
Cite this as: Alexei Zubarev, "Extractable quantum work from a twomode Gaussian state in a noisy channel" from the Notebook Archive (2022), https://notebookarchive.org/2022-01-c07ri99
Download