Nonattacking Arrangements of Kings on Even Length Chessboard
                    
                    
                    
                    
                Author
Tricia Brown
Title
Nonattacking Arrangements of Kings on Even Length Chessboard
Description
For very small n>1, the code computes the number of distinct, maximum, independent arrangements of kings on a 2n by 2n chessboard.
Category
Academic Articles & Supplements
Keywords
chess, independent arrangements
URL
http://www.notebookarchive.org/2022-02-0zki6rn/
DOI
https://notebookarchive.org/2022-02-0zki6rn
Date Added
2022-02-02
Date Last Modified
2022-02-02
File Size
14.8 kilobytes
Supplements
Rights
CC BY 4.0
 Download
Download Open in Wolfram Cloud
Open in Wolfram Cloud
This file contains supplementary data for Tricia Muldoon Brown, “MAXIMUM ARRANGEMENTS OF NONATTACKING KINGS ON THE 2n × 2n CHESSBOARD,” https://www.researchgate.net/publication/345816618_MAXIMUM_ARRANGEMENTS_OF_NONATTACKING_KINGS_ON_THE_2n_2n_CHESSBOARD.
Nonattacking Arrangements of Kings on Even Length Chessboard
Nonattacking Arrangements of Kings on Even Length Chessboard
Tricia Brown
Off[General::partw]ClearAll[S,n,m,C1,B1,A1,A2,p,q,f,r]n=4S:=Subsets[Range[n]]m:={}Do[AppendTo[m,Subsets[S[[i]]]],{i,1,2^n}]C1:={}Do[AppendTo[C1,{}],{i,1,2^n}]B1:={}Do[AppendTo[B1,C1],{i,1,2^n}]A1:={}Do[AppendTo[A1,B1],{i,1,2^n}]A2:={}Do[AppendTo[A2,B1],{i,1,2^n}]
Out[]=
4
Do[Do[Do[Do[For[j=1,j<n+1,j++,If[MemberQ[m[[i]],j,2],,If[MemberQ[m[[i,l]],j-1],If[j<k,AppendTo[A1[[i,l,k]],j]]]]],{k,1,n+1}],{l,1,2^p}],{i,Sum[Binomial[n,j],{j,0,p-1}]+1,Sum[Binomial[n,j],{j,0,p}]}],{p,0,n}]
p[x_,y_,z_]:=Max[A1[[x,y,z]],{1}]
Do[Do[Do[Do[For[j=1,j<n+1,j++,If[MemberQ[m[[i,l]],j],If[MemberQ[m[[i]],j-1,2],,If[j>k,AppendTo[A2[[i,l,k]],j]]]]],{k,1,n+1}],{l,1,2^p}],{i,Sum[Binomial[n,j],{j,0,p-1}]+1,Sum[Binomial[n,j],{j,0,p}]}],{p,0,n}]
q[x_,y_,z_]:=Min[A2[[x,y,z]],{n+1}]
f[x_,z_,1]:=Sum[Sum[r=1;While[m[[x,r]]≠m[[y,2^l]],r++];Sum[If[MemberQ[m[[x]],m[[y,2^l]]],1,0],{j,p[x,r,z],q[x,r,z]}],{y,Sum[Binomial[n,k],{k,0,l-1}]+1,Sum[Binomial[n,k],{k,0,l}]}],{l,0,n}]
Do[f[x_,z_,t_]:=Sum[Sum[r=1;While[m[[x,r]]≠m[[y,2^l]],r++];Sum[If[MemberQ[m[[x]],m[[y,2^l]]],f[y,j,t-1],0],{j,p[x,r,z],q[x,r,z]}],{y,Sum[Binomial[n,k],{k,0,l-1}]+1,Sum[Binomial[n,k],{k,0,l}]}],{l,0,n}],{t,2,n-1}]
Sum[f[x,z,n-1],{x,1,2^n},{z,1,n+1}]
Out[]=
281571


Cite this as: Tricia Brown, "Nonattacking Arrangements of Kings on Even Length Chessboard" from the Notebook Archive (2022), https://notebookarchive.org/2022-02-0zki6rn
		
Download

