Arrhenius Activation Energy and Transitivity in Fission-Track Annealing Equations
Author
Matheus Rufino, Sandro Guedes
Title
Arrhenius Activation Energy and Transitivity in Fission-Track Annealing Equations
Description
Script to obtain Fission-Track annealing equations (Arrhenius activation energy, transitivity)
Category
Academic Articles & Supplements
Keywords
Fission-track thermochronology, Arrhenius models, Activation energy, Transitivity
URL
http://www.notebookarchive.org/2022-02-c067im0/
DOI
https://notebookarchive.org/2022-02-c067im0
Date Added
2022-02-26
Date Last Modified
2022-02-26
File Size
92.47 kilobytes
Supplements
Rights
CC BY 4.0



This file contains supplementary data for M. Rufino and S. Guedes, “Arrhenius activation energy and transitivity in fission-track annealing equations,” Chemical Geology, 2022 120779. https://doi.org/10.1016/j.chemgeo.2022.120779.
Arrhenius Activation Energy and Transitivity in Fission-Track Annealing Equations
Arrhenius Activation Energy and Transitivity in Fission-Track Annealing Equations
Matheus Rufino and Sandro Guedes
In[]:=
Clear[c,f,T,t,R,g,r,fr,n,Ea,lnk,lnt,fβ,γ,ptsIso,setSpec,pltArrhenius,pltPseudoArrhenius,pltEa,pltγ,durangodata,durangoPsArrh,DurangoPoints,FP,k,α,β,g2,fK,Ketlnt,Kettblr,KetpseudoFA,KetpseudoFCA]
In[]:=
(**Equations**)
In[]:=
g[r_]=Log[1-r];fr[r_]=;c={{5.631017,-4.910332,-8.51756,-12.80664},{0.186520,0.194445,0.12659,0.23109},{-10.455390,-9.610091,-20.99225,-41.37987},{0,0,0.29845,-1.20490}};R=1.987204258;f[t_,T_]={c[[1,1]]+c[[2,1]]Log[t]+c[[3,1]]/(RT),c[[1,2]]+c[[2,2]]Log[t]+c[[3,2]]Log[1/(RT)],c[[1,3]]+c[[2,3]]((Log[t]-c[[3,3]])/(1/(RT)-c[[4,3]])),c[[1,4]]+c[[2,4]]((Log[t]-c[[3,4]])/(Log[1/(RT)]-c[[4,4]]))};lnk[t_,T_,n_]=Log[f[t,T]]-(n-1)f[t,T];lnt[t_,T_]=Table[Simplify[Solve[f[t,T][[i]]==g[r],Log[t]][[1,1,2]]],{i,1,4,1}]-Log[3600];Ea[t_,T_,n_]=Simplify[-R(D[Log[f[t,T]]-(n-1)f[t,T],T]/D[1/T,T])];fβ[t_,T_]=f[t,T]/.T->1/(βR);γ[t_,β_,n_]=Simplify;
n
(1-r)
-3
10
∂
t
∂
t
-1
(n-1)fβ[t,T]-Log[fβ[t,T]]
∂
β
∂
β
∂
t
In[]:=
{{"lnk","lnt","Ea","γ"},{lnk[t,T,n],lnt[t,T],Ea[t,T,n],γ[t,T,n]}}//TableForm
Out[]//TableForm=
lnk | lnt | Ea | γ | ||||||||||||||||
|
|
|
|
In[]:=
(**Pseudo-Arrhenius**)
In[]:=
g2[r_,β_,α_]:=-1
α
(1-)β
β
r
α
In[]:=
cK={{-21.589968,-62.8742},{0.000796839,1.3060},{-21.259381,-85.4861},{0.000558969,-8.3589}};β={-10.058835,-9.1435};α={-0.34055399,-0.3900};fK[t_,T_]=cK[[1,1]]+cK[[2,1]],cK[[1,2]]+cK[[2,2]];Ketlnt[t_,T_]=Table[Solve[fK[t,T][[i]]==g2[r,β[[i]],α[[i]]],Log[t]][[1,1,2]],{i,1,2,1}]-Log[3600];Kettblr=Table[Table[Ketlnt[t,T][[i]],{r,{0.55,0.93}}],{i,1,2,1}];KetpseudoFA=Simplify[Table[Kettblr[[1,i]],{i,1,2,1}]]/.->T;KetpseudoFCA=Simplify[Table[Kettblr[[2,i]],{i,1,2,1}]]/.->T;pltPseudoArrheniusKet={Plot[KetpseudoFA,{T,0.55,5},PlotStyle{{Dashed,Thickness[0.0080]}},LabelStyle->Directive[FontSize->22],PlotLegends->Placed[{"Ketcham et al.(2007)","Ketcham et al.(2007)"},Scaled[{0.35,0.85}]]],Plot[KetpseudoFCA,{T,0.,5},PlotStyle{{Dashed,Thickness[0.0080]}},LabelStyle->Directive[FontSize->22],PlotLegends->Placed[{"Ketcham et al.(2007)","Ketcham et al.(2007)"},Scaled[{0.35,0.85}]]]};
Log[t]-cK[[3,1]]
(1/T)-cK[[4,1]]
Log[t]-cK[[3,2]]
Log[(1/T)]-cK[[4,2]]
1
T
-3
10
1
T
-3
10
durangodata=Import["DadosDurangoLcMod.CSV","Dataset","HeaderLines"->1];(**PRECISAARRUMARESSELINK**)durangoPsArrh=Table,N[Log[durangodata[[i,1]]]],durangodata[[i,7]],{i,1,82};DurangoPoints=ListPlot[{Select[durangoPsArrh,(#[[3]]>.9)&][[;;,1;;2]],Select[durangoPsArrh,(0.8<#[[3]]<.9)&][[;;,1;;2]],Select[durangoPsArrh,(0.7<#[[3]]<.8)&][[;;,1;;2]],Select[durangoPsArrh,(#[[3]]<.7)&][[;;,1;;2]]},PlotStyle{Blue,Red,Blue,Red},PlotMarkers{"OpenMarkers",12},LabelStyleDirective[Bold,FontSize->22],PlotLegendsPlaced[{"r > 0.9","0.8 < r < 0.9","0.7 < r < 0.8","0.6 < r < 0.7"},Scaled[{0.8,0.2}]]];(**ImportDurangoDatafromCloud**)
3
10
durangodata[[i,6]]
In[]:=
SetAttributes[setSpec,HoldAllComplete]setSpec[s_Symbol,spec__]:=s/:h_[pre__,s,post___]:=h[pre,spec,post]setSpec[ops1,Frame->True,LabelStyle->Directive[FontSize->30],ImageSize->Large,FrameStyle->Thickness[.005],AspectRatio->0.8,PlotStyle->{{Thickness[0.0080]}},PlotRange->{{0,4},{-50,55}},FrameLabel->{"1000/T []","ln(t) [h]"},AxesOrigin->{0,-45},Epilog->{Text[Style["r = 0.55",25],Scaled[{0.25,0.5}]],Text[Style["r = 0.93",25],Scaled[{0.5,0.35}]]},PlotTheme->"Scientific"]
-1
K
In[]:=
tblr=TableTable[lnt[t,T][[i]],{r,{0.55,0.93}}]/.1T->T,T->T,{i,1,4,1};pseudoPA=Table[tblr[[1,i]],{i,1,2,1}];pseudoPC=Table[tblr[[2,i]],{i,1,2,1}];pseudoFA=Table[tblr[[3,i]],{i,1,2,1}];pseudoFCA=Table[tblr[[4,i]],{i,1,2,1}];
-3
10
3
10
In[]:=
pltPseudoArrhenius={Plot[pseudoPA,{T,0,5},ops1],Plot[pseudoPC,{T,0,4},ops1],Plot[pseudoFA,{T,0.57,4},ops1],Plot[pseudoFCA,{T,0,4},ops1]};
In[]:=
(**Arrhenius-space**)
In[]:=
setSpec[ops2,Frame->True,LabelStyle->Directive[FontSize->30],ImageSize->Large,FrameStyle->Thickness[.005],AspectRatio->0.8,PlotStyle->{{Thickness[0.0080]}},FrameLabel->{"1000/T []","ln(k)"}]setSpec[ops22,JoinedTrue,PlotMarkers{"OpenMarkers",6},PlotStyle{Red,Purple},LabelStyleDirective[FontSize->30],LabelStyleDirective[Bold,FontSize->22],PlotLegendsPlaced[{"r = 0.4","r = 0.9"},Scaled[{0.2,0.2}]]]
-1
K
In[]:=
ptsIso[t_,ri_,n_,i_]:=,lnk[t,NSolve[g[ri]==f[t,T][[i]],T][[1,1,2]],n][[i]]
1000
NSolve[g[ri]==f[t,T][[i]],T][[1,1,2]]
In[]:=
tr=Table[36,{n,0,40,1}];(**Listoftimes**)
-9
10
n
10
In[]:=
tlab=1003600;tgeo=9.4608;
14
10
In[]:=
Isoptscalc[n_]=Table[{Table[ptsIso[t,0.4,n,i],{t,tr}],Table[ptsIso[t,0.9,n,i],{t,tr}]},{i,1,4,1}];




In[]:=
pltArrhenius[n_,FP_]:=JoinTableShowPlotlnktlab,,n[[i]],lnktgeo,,n[[i]],{T,0,4},PlotStyle{{Gray,Thickness[0.0080]}},ops2,Epilog->{Text[Style["Time independent",25],Scaled[{0.5,0.8}]]},ListPlot[{Isoptscalc[n][[i,1]],Isoptscalc[n][[i,2]]},ops22],{i,1,2,1},TableShowPlotlnktlab,,n[[i]],lnktgeo,,n[[i]],{T,FP,5},PlotRange->{{0,4},{-100,50}},ops2,PlotLegends->Placed[{"t = 100 h","t = 30 Ma"},Scaled[{0.8,0.85}]],PlotTablelnktlab*,,n[[i]],{j,1,14},{T,FP,8},PlotRange->{{0,4},Automatic},PlotStyleDirective[Opacity[0.2],Black],ListPlot[{Select[Isoptscalc[n][[i,1]],(FP<#[[1]]&)[[;;,1;;2]]],Select[Isoptscalc[n][[i,2]],(FP<#[[1]]&)[[;;,1;;2]]]},ops22],{i,3,4,1}
1000
T
1000
T
1000
T
1000
T
j
10
1000
T
In[]:=
(**Arrheniusactivationenergy**)
In[]:=
setSpec[ops3,Frame->True,LabelStyle->Directive[FontSize->30],ImageSize->Large,FrameStyle->Thickness[.005],AspectRatio->0.8,PlotStyle->{{Thickness[0.0080]}},FrameLabel->{"T [K]"," [kcal/mol]"}]
E
a
In[]:=
pltEa[n_]:=Join[Table[Plot[{Ea[tlab,T,n][[i]],Ea[tgeo,T,n][[i]]},{T,250,650},PlotStyle{{Gray,Thickness[0.0080]}},ops3,Epilog->{Text[Style["Time independent",25],Scaled[{0.5,0.8}]]}],{i,1,2,1}],Table[Plot[{Ea[tlab,T,n][[i]],Ea[tgeo,T,n][[i]]},{T,250,650},ops3,PlotLegends->Placed[{"t = 100 h","t = 30 Ma"},Scaled[{0.2,0.8}]],PlotRange->{{250,650},{0,60}}],{i,3,4,1}]]
In[]:=
(**Transitivity**)
In[]:=
setSpec[ops4,LabelStyle->Directive[FontSize->30],ImageSize->Large,FrameStyle->Thickness[.005],AspectRatio->0.8,Frame->True,PlotRange->{{-0.01,2},{-0.05,0.05}},FrameLabel->{"β [mol/kcal]","γ (β) [mol/kcal]"},AxesOrigin->{0,-0.05}]
In[]:=
pltγ[n_]:=Join[{Plot[γ[tlab,β,n][[1]],{β,0,2},ops4,Epilog->{Text[Style["Arrhenius",25],Scaled[{0.5,0.75}]]},PlotStyle->{{Orange,Thickness[0.0080]},{Orange,Thickness[0.0080]}}]},{Plot[{γ[tlab,β,n][[2]],0},{β,0,10},ops4,Epilog->{Text[Style["Sub-Arrhenius",25],Scaled[{0.5,0.8}]],Text[Style["Arrhenius",25],Scaled[{0.5,0.55}]]},PlotRange->{{250,650},{0,60}},PlotStyle->{{Blue,Thickness[0.0080]},{Orange,Thickness[0.0080]}}]},Table[Show[Plot[{γ[tlab,β,n][[i]],γ[tgeo,β,n][[i]],0},{β,0.29845,2},PlotRange->{{-0.01,2},{-0.05,0.05}},ops4,PlotLegendsPlaced[{"t = 100 h","t = 30 Ma"},Scaled[{0.5,0.2}]],Epilog->{Text[Style["Sub-Arrhenius",25],Scaled[{0.2,0.8}]],Text[Style["Arrhenius",25],Scaled[{0.7,0.55}]]},PlotStyle->{{Blue,Thickness[0.0080]},{Blue,Dashed,Thickness[0.0080]},{Orange,Thickness[0.0080]}}],Plot[0,{β,0,2},PlotStyle{Orange,Thickness[0.0080]}]],{i,3,4,1}]]
In[]:=
Resultados[i_]:=Manipulate[{pltPseudoArrhenius[[i]],pltArrhenius[n][[i]],pltEa[n][[i]],pltγ[n][[i]]},{n,-5,0}]


Cite this as: Matheus Rufino, Sandro Guedes, "Arrhenius Activation Energy and Transitivity in Fission-Track Annealing Equations" from the Notebook Archive (2022), https://notebookarchive.org/2022-02-c067im0

Download

