The Lost Meaning of Jupiter's High-degree Love Numbers
Author
Benjamin Idini
Title
The Lost Meaning of Jupiter's High-degree Love Numbers
Description
Analytical solution to the gyrotidal effect applied to Jupiter's tidal response.
Category
Academic Articles & Supplements
Keywords
Solar system gas giant planets, Galilean satellites, Planetary interior, Tides
URL
http://www.notebookarchive.org/2022-03-anvqac8/
DOI
https://notebookarchive.org/2022-03-anvqac8
Date Added
2022-03-23
Date Last Modified
2022-03-23
File Size
31.78 kilobytes
Supplements
Rights
CC BY 4.0
Download
Open in Wolfram Cloud
This file contains supplementary data for Benjamin Idini and David J. Stevenson, “The Lost Meaning of Jupiter's High-degree Love Numbers,” The Planetary Science Journal, 3(1) 2022 11. https://doi.org/10.3847/PSJ/ac4248.
The Lost Meaning of Jupiter’s High-degree Love Numbers
The Lost Meaning of Jupiter’s High-degree Love Numbers
Benjamin Idini & David Stevenson
California Institute of Technology
bidiniza@caltech.edu
bidiniza@caltech.edu
NASA’s Juno mission recently reported Jupiter’s high-degree (degree l, azimuthal order m = 4,2 ) Love number = 1.289 ± 0.063 (1σ), an order of magnitude above the hydrostatic obtained in a nonrotating Jupiter model. After numerically modeling rotation, the hydrostatic =1.743 ± 0.002 is still 7σ away from the observation, raising doubts about our understanding of Jupiter’s tidal response. Here, we use first-order perturbation theory to explain the hydrostatic result analytically. We use a simple Jupiter equation of state (n = 1 polytrope) to obtain the fractional change in when comparing a rotating model with a nonrotating model. Our analytical result shows that the hydrostatic is dominated by the tidal response at l = m = 2 coupled into the spherical harmonic l,m = 4,2 by the planet’s oblate figure. The l = 4 normalization in introduces an orbital factor into , where a is the satellite semimajor axis and s is Jupiter’s average radius. As a result, different Galilean satellites produce a different . We conclude that high-degree tesseral Love numbers (l > m, m ≥ 2) are dominated by lower-degree Love numbers and thus provide little additional information about interior structure, at least when they are primarily hydrostatic. Our results entail important implications for a future interpretation of the currently observed Juno . After including the coupling from the well-understood l = 2 dynamical tides (Δ ≈ -4%), Jupiter’s hydrostatic requires an unknown dynamical effect to produce a fractional correction Δ≈ -11% in order to fit Juno’s observation within 3σ. Future work is required to explain the required Δ.
k
42
k
42
k
42
k
42
k
42
k
42
k
42
2
(a/s)
k
42
k
42
k
42
k
2
k
42
k
42
k
42
Spherical Bessel functions
Spherical Bessel functions
In[]:=
Clear["Global`*"]j[l_]:=Nest&,,l/.xπ//Simplifydj[l_]:=DNest&,,l,x/.xπ//Simplifyddj[l_]:=DNest&,,l,{x,2}/.xπ//Simplify
l
(-x)
D[#,x]
x
Sin[x]
x
l
(-x)
D[#,x]
x
Sin[x]
x
l
(-x)
D[#,x]
x
Sin[x]
x
Tidal forcing coefficient, Equation (8):
Tidal forcing coefficient, Equation (8):
Replace the corresponding semimajor axis definition into U[l,m].
In[]:=
Rj=6.9911;aio=4.217;aeu=6.709;aga=10.704;U[l_,m_]:=LegendreP[l,m,0]
9
10
10
10
10
10
10
10
l
Rj
aio
1/2
4π(l-m)!
(2l+1)(l+m)!
Evaluation of coefficients in Equation (22):
Evaluation of coefficients in Equation (22):
In[]:=
Q[l_,m_]:=-f1[l_]:=dj[l]+j[l]f2[l_,q_]:=-(πddj[l]+(l+2)dj[l])f3a[l_]:=f3b[l_,q_]:=-f4[l_]:=(3(+)-1)f5[l_]:=Q[l+1,2]Q[l+2,2]f6[l_]:=Q[l-1,2]Q[l,2]c1[q_]:=f1[2]U[2,2]+f2[2,q]f4[2]U[2,2]//FullSimplify;c2[q_]:=f2[4,q]U[4,2]f6[4]//FullSimplify;c3[q_]:=f3a[2]U[2,2]+f3b[4,q]U[4,2]f6[4]+f3b[2,q]U[2,2]f4[2]//FullSimplify;c4[q_]:=f2[2,q]U[2,2]f5[2]//FullSimplify;c5[q_]:=f1[4]U[4,2]+f2[4,q]f4[4]U[4,2]//FullSimplify;c6[q_]:=f3a[4]U[4,2]+f3b[4,q]U[4,2]f4[4]+f3b[2,q]U[2,2]f5[2]//FullSimplify;
1/2
2
l
2
m
4-1
2
l
(l+1)
π
5q
2
π
(2l+1)
π
5q
2
π
l(2l+1)
π
1
2
2
Q[l,2]
2
Q[l+1,2]
3
2
3
2
Solution for A2 and A4, Equations (26) and (27):
Solution for A2 and A4, Equations (26) and (27):
It requires to manually replace the result of A2 and A4 into A22[q_] and A42[q_], respectively.
In[]:=
L1={c1[q],c2[q],c3[q]};L2={c4[q],c5[q],c6[q]};L1=L1/L1[[1]];L2=L2/L2[[1]];L2=L2-L1;A4=L2[[3]]/L2[[2]]//FullSimplify;A2=L1[[3]]-A4L1[[2]]//FullSimplify;A2A4
Out[]=
-10.+
231.989-33.5551q
15.4659+q(-4.49452+1.q)
Out[]=
24.9905+
-118.728+4247.83q
15.4659+q(-4.49452+1.q)
In[]:=
A22[q_]:=-9.999999999999995`+;A42[q_]:=24.990511656423635`+;dk2[q_]:=dk4[q_]:=-1qq=0.0892;
231.98888762845212`-33.55514203728285`q
15.465925841896812`+q(-4.4945180237141455`+1.`q)
-118.72806728735083`+4247.8339632653415`q
15.465925841896812`+q(-4.4945180237141455`+1.`q)
A22[q]j[2]-1
5j[2]-1
A42[q]j[4]-1
9j[4]
πj[3]
In[]:=
dk2[qq]dk4[qq]
Out[]=
1.11255
Out[]=
14.3953
Cite this as: Benjamin Idini, "The Lost Meaning of Jupiter's High-degree Love Numbers" from the Notebook Archive (2022), https://notebookarchive.org/2022-03-anvqac8
Download