A Model of Spontaneous Collapse with Energy Conservation
Author
D. W. Snoke
Title
A Model of Spontaneous Collapse with Energy Conservation
Description
Supplemental notebook to "A Model of Spontaneous Collapse with Energy Conservation"
Category
Academic Articles & Supplements
Keywords
quantum field theory, quantum foundations, spontaneous collapse
URL
http://www.notebookarchive.org/2022-07-5la04jb/
DOI
https://notebookarchive.org/2022-07-5la04jb
Date Added
2022-07-12
Date Last Modified
2022-07-12
File Size
66.28 kilobytes
Supplements
Rights
Redistribution rights reserved
Download
Open in Wolfram Cloud
This file contains supplementary data for D. W. Snoke, "A Model of Spontaneous Collapse with Energy Conservation," Foundations of Physics, 51(5), 2021 100. https://link.springer.com/article/10.1007/s10701-021-00507-z.
A Model of Spontaneous Collapse with Energy Conservation
A Model of Spontaneous Collapse with Energy Conservation
D. W. Snoke
(*Thiscalculationgivesasinglerandomwalk,usingaLorentzian(Cauchy)distributionofkicks,andplotsit*)Nsteps=2000;Theta=Pi/2;m2=Table[0,{i,1,Nsteps,1}];m3=Table[0,{i,1,Nsteps,1}];kick=Table[0,{i,1,Nsteps,1}];For[i=1,i≤Nsteps,i++,kick[[i]]=Sign[Random[]-.5]*Min[Abs[RandomVariate[CauchyDistribution[]]]*norm,.2]];m3[[1]]=Cos[Theta];m2[[1]]=Sin[Theta];dt=1;norm=.005;For[i=2,i<=Nsteps,i++,dm=kick[[i]]*Sqrt[1-(m3[[i-1]])^2];m3[[i]]=m3[[i-1]]+dm*m2[[i-1]]*dt;m2[[i]]=m2[[i-1]]-dm*m3[[i-1]]*dt;While[m3[[i]]>1,{m3[[i]]=1;m2[[i]]=0}];While[m3[[i]]<-1,{m3[[i]]=-1;m2[[i]]=0}]]plottable=Table[{i,m3[[i]]},{i,1,Nsteps,1}];ListPlot[plottable,JoinedTrue,PlotRange{-1,1},AspectRatio.25,PlotStyle{RGBColor[0,0,0],Thickness[.0025]},AxesStyle{{RGBColor[0,0,0],Thickness[.0025]},{RGBColor[0,0,0],Thickness[.0025]}},TicksStyleDirective[FontSize14]]
Out[]=
(*Thiscalculationaveragesovermanyrandomwalkstogetthestatisticsofhittingeitherendpoint,forastartingpointbetweenthetwoendpoints,usingaLorentzian(Cauchy)distributionofkicks.TheBornprobabilityruleisreproduced.Changingthestrengthofthekicksisdonebychangingthevariable"norm".TheBornruleisreproducedforawiderangeofvaluesof"norm".*)jtable=Table[0,{j,1,10}];For[j=1,j≤10,j++,Nsteps=2000;Theta=.1+.8*Pi*(j/10);PosSum=0;NegSum=0;For[is=1,is≤1000,is++,m2=Table[0,{i,1,Nsteps,1}];m3=Table[0,{i,1,Nsteps,1}];kick=Table[0,{i,1,Nsteps,1}];norm=.005;For[i=1,i≤Nsteps,i++,kick[[i]]=Sign[Random[]-.5]*Min[Abs[RandomVariate[CauchyDistribution[]]]*norm,.2]];m3[[1]]=Cos[Theta];m2[[1]]=Sin[Theta];dt=1;For[i=2,i<=Nsteps,i++,dm=kick[[i]]*Sqrt[1-(m3[[i-1]])^2];m3[[i]]=m3[[i-1]]+dm*m2[[i-1]]*dt;m2[[i]]=m2[[i-1]]-dm*m3[[i-1]]*dt;While[m3[[i]]>1,{m3[[i]]=1;m2[[i]]=0}];While[m3[[i]]<-1,{m3[[i]]=-1;m2[[i]]=0}]];PosSum=If[m3[[Nsteps]]>0,PosSum+1,PosSum];NegSum=If[m3[[Nsteps]]<0,NegSum+1,NegSum];pfrac=N[PosSum/(PosSum+NegSum)];nfrac=N[NegSum/(PosSum+NegSum)];];jtable[[j]]=pfrac;Print[j," ",.5+N[Cos[Theta]]/2," ",pfrac]];PTable=Table[{.5+N[Cos[(.1+.8*Pi*(k/10))]]/2,jtable[[k]]},{k,1,10}];a=ListPlot[PTable];b=Plot[x,{x,0,1}];Show[a,b,PlotRange{0,1}]
1 0.969458 0.97
2 0.911917 0.908
3 0.828493 0.836
4 0.724429 0.745
5 0.606263 0.608
6 0.48142 0.492
7 0.357745 0.348
8 0.243008 0.246
9 0.144419 0.138
10 0.0681721 0.07
Out[]=
(*Thiscalculationaveragesovermanyrandomwalkstogetthestatisticsofhittingeitherendpoint,forastartingpointbetweenthetwoendpoints,usingaGaussian(Normal)distributionofkicks.TheBornruleisreproducedforsimilarconditionsastheLorentziandistribution*)jtable=Table[0,{j,1,10}];For[j=1,j≤10,j++,Nsteps=6000;Theta=.1+.8*Pi*(j/10);PosSum=0;NegSum=0;NoDec=0;For[is=1,is≤2000,is++,m2=Table[0,{i,1,Nsteps,1}];m3=Table[0,{i,1,Nsteps,1}];kick=Table[0,{i,1,Nsteps,1}];norm=.025;For[i=1,i≤Nsteps,i++,kick[[i]]=Sign[Random[]-.5]*Min[Abs[RandomVariate[NormalDistribution[]]]*norm,.2]];m3[[1]]=Cos[Theta];m2[[1]]=Sin[Theta];dt=1;For[i=2,i<=Nsteps,i++,dm=kick[[i]]*Sqrt[1-(m3[[i-1]])^2];m3[[i]]=m3[[i-1]]+dm*m2[[i-1]]*dt;m2[[i]]=m2[[i-1]]-dm*m3[[i-1]]*dt;While[m3[[i]]>1,{m3[[i]]=1;m2[[i]]=0}];While[m3[[i]]<-1,{m3[[i]]=-1;m2[[i]]=0}]];PosSum=If[m3[[Nsteps]]>=.99,PosSum+1,PosSum];NegSum=If[m3[[Nsteps]]<=-.99,NegSum+1,NegSum];NoDec=If[m3[[Nsteps]]<.99&&m3[[Nsteps]]>-.99,NoDec+1,NoDec];pfrac=N[PosSum/(PosSum+NegSum+NoDec)];nfrac=N[NegSum/(PosSum+NegSum+NoDec)];ufrac=N[NoDec/(PosSum+NegSum+NoDec)];];jtable[[j]]=pfrac;Print[j," ",.5+N[Cos[Theta]]/2," ",pfrac," ",ufrac]];PTable=Table[{.5+N[Cos[(.1+.8*Pi*(k/10))]]/2,jtable[[k]]},{k,1,10}];a=ListPlot[PTable];b=Plot[x,{x,0,1}];Show[a,b,PlotRange{0,1}]
1 0.969458 0.9715 0.0005
2 0.911917 0.916 0.
3 0.828493 0.82 0.
4 0.724429 0.738 0.
5 0.606263 0.607 0.
6 0.48142 0.4875 0.
7 0.357745 0.353 0.
8 0.243008 0.238 0.
9 0.144419 0.1395 0.
10 0.0681721 0.06 0.
Out[]=
Cite this as: D. W. Snoke, "A Model of Spontaneous Collapse with Energy Conservation" from the Notebook Archive (2022), https://notebookarchive.org/2022-07-5la04jb
Download