Stationary Measures on Infinite Graphs
Author
Alexandre Baraviera, Pedro Duarte, Maria Joana Torres
Title
Stationary Measures on Infinite Graphs
Description
Supplemental notebook to "Stationary measures on infinite graphs"
Category
Academic Articles & Supplements
Keywords
Isospectral graph reduction, infinite graphs, stochastic operator, stationary measures
URL
http://www.notebookarchive.org/2022-07-9oyvhxu/
DOI
https://notebookarchive.org/2022-07-9oyvhxu
Date Added
2022-07-21
Date Last Modified
2022-07-21
File Size
7.21 megabytes
Supplements
Rights
Redistribution rights reserved

This file contains supplementary data for Alexandre Baraviera, Pedro Duarte and Maria Joana Torres, "Stationary Measures on Infinite Graphs," Communications in Contemporary Mathematics, 2021 2150025. https://doi.org/10.1142/S0219199721500255.
Mathematica Code
Mathematica Code
Stationary Measures on Infinite Graphs
Stationary Measures on Infinite Graphs
Alexandre Baraviera, Pedro Duarte, Maria Joana Torres
- Instituto de Matemática e Estatística, UFRGS, Av. Bento Gonçalves 9500, 91500, Porto Alegre, RS, Brazil.
Email: baravi@mat.ufrgs.br
- CMAF-CIO, Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
Email: pedromiguel.duarte@gmail.com
- CMAT and Departamento de Matemática, Universidade do Minho, Campus de Gualtar, 4700-057 Braga, Portugal
Email: jtorres@math.uminho.pt
- Instituto de Matemática e Estatística, UFRGS, Av. Bento Gonçalves 9500, 91500, Porto Alegre, RS, Brazil.
Email: baravi@mat.ufrgs.br
- CMAF-CIO, Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
Email: pedromiguel.duarte@gmail.com
- CMAT and Departamento de Matemática, Universidade do Minho, Campus de Gualtar, 4700-057 Braga, Portugal
Email: jtorres@math.uminho.pt
Recently, we extended the theory of isospectral reductions of L. Bunimovich and B. Webb to infinite graphs, and described an application of this extension to the problems of existence and approximation of stationary measures on a class of tridiagonal stochastic infinite graphs. In this note, we describe an isospectral reduction-reconstruction algorithm and provide numerical examples to compare its execution times with those of a standard algorithm. This is based on Section 8 in our article “Stationary Measures on Infinite Graphs”, Communications in Contemporary Mathematics, https://doi.org/10.1142/S0219199721500255. For the sake of completeness, we also provide the Mathematica code and numerical examples to perform isospectral reductions of arbitrary complex-valued matrices (and, in particular, isospectral reduction of stochastic matrices) and reconstruction of eigenvectors (in particular, reconstruction of stationary probability measures).
1. Introduction
1. Introduction
2. Isospectral Reduction Theory on Finite Graphs
2. Isospectral Reduction Theory on Finite Graphs
3. Isospectral Reduction Examples
3. Isospectral Reduction Examples
4. Extension of Isospectral Reduction Theory to Infinite Dimension
4. Extension of Isospectral Reduction Theory to Infinite Dimension
5. Tridiagonal Stochastic Infinite Graphs
5. Tridiagonal Stochastic Infinite Graphs
6. Computational Algorithm
6. Computational Algorithm
7. Iterated isospectral reduction & reconstruction examples
7. Iterated isospectral reduction & reconstruction examples
8. References
8. References
9. Acknowledgments
9. Acknowledgments
Cite this as: Alexandre Baraviera, Pedro Duarte, Maria Joana Torres, "Stationary Measures on Infinite Graphs" from the Notebook Archive (2022), https://notebookarchive.org/2022-07-9oyvhxu
Download
