Everything to Know about Mellin-Barnes Integrals - Part I
Author
Oleg Marichev
Title
Everything to Know about Mellin-Barnes Integrals - Part I
Description
Livestream notebook: Everything to Know about Mellin-Barnes Integrals - Part I
Category
Essays, Posts & Presentations
Keywords
integrals, calculus, Mellin-Barnes
URL
http://www.notebookarchive.org/2023-02-7gi74jc/
DOI
https://notebookarchive.org/2023-02-7gi74jc
Date Added
2023-02-16
Date Last Modified
2023-02-16
File Size
2.08 megabytes
Supplements
Rights
Redistribution rights reserved
Download
Open in Wolfram Cloud
Everything to Know about Mellin-Barnes Integrals - Part I
Everything to Know about Mellin-Barnes Integrals - Part I
Oleg Marichev
CITE THIS NOTEBOOK: Wolfram R&D LIVE: Everything to Know about Mellin-Barnes Integrals - Part I by Oleg Marichev. Wolfram Community FEB 24 2023.
In[]:=
EmbeddedHTML["<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/WOkfc4q2NOM\" title=\"YouTube video player\" frameborder=\"0\" allow=\"accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share\" allowfullscreen></iframe>"]
Introduction
Introduction
What is Mellin-Barnes integrals (MBintegrals)
What is Mellin-Barnes integrals (MBintegrals)
Contour ℒ for MB integrals
Contour ℒ for MB integrals
Example with Exp for {A,B,C,D}={1,0,0,0}
Example with Exp for {A,B,C,D}={1,0,0,0}
Example with Exp for {A,B,C,D}={0,1,0,0}
Example with Exp for {A,B,C,D}={0,1,0,0}
Important literature for beginners
Important literature for beginners
Connection with FourierTransform
Connection with FourierTransform
Important characteristics for gammas inside of above MBintegral
Important characteristics for gammas inside of above MBintegral
Operations with {αz,za,zz}
Operations with
{,,}
α
z
z
a
z
z
Taylor & Fourier series are based on αz,zazLog[a]
Taylor & Fourier series are based on
,
α
z
z
a
zLog[a]
Functions representable through Mellin-Barnes integrals (MeijeG)
Functions representable through Mellin-Barnes integrals (MeijeG)
Six examples of Mellin-Barnes integrals (MBintegrals)
Six examples of Mellin-Barnes integrals (MBintegrals)
General MBintegrals defining MeijerG & FoxH functions
General MBintegrals defining MeijerG & FoxH functions
MeijerG & generalized MeijerG https://www.wolframalpha.com/input?i=MeijerG
MeijerG & generalized MeijerG https://www.wolframalpha.com/input?i=MeijerG
Craziness in definition of MeijerG
Craziness in definition of MeijerG
Slater’s definition of MeijerG (Lucy Joan Slater (1922 – 2008))
Slater’s definition of MeijerG (Lucy Joan Slater (1922 – 2008))
FoxH https://www.wolframalpha.com/input?i=FoxH
FoxH https://www.wolframalpha.com/input?i=FoxH
Inter relations MeijerG, generalized MeijerG, FoxH & Slater’s version
Inter relations MeijerG, generalized MeijerG, FoxH & Slater’s version
Evaluation of MBintegrals for MeijerG function
Evaluation of MBintegrals for MeijerG function
Main formulas for Gamma https://functions.wolfram.com/GammaBetaErf/Gamma/
Main formulas for Gamma https://functions.wolfram.com/GammaBetaErf/Gamma/
Representation of MeijerG through residues in left single poles
Representation of MeijerG through residues in left single poles
Representation of MeijerG through residues in right single poles
Representation of MeijerG through residues in right single poles
Representation of MeijerG through residues in left double poles
Representation of MeijerG through residues in left double poles
Example (m,n,p,q}={1,1,1,1} <->ρ(1+z)
Example (m,n,p,q}={1,1,1,1} <->
ρ
(1+z)
Differential equation for MeijerG and its solutions
Differential equation for MeijerG and its solutions
From Marichev’s book 1978
From Marichev’s book 1978
Conversion of Slater’s MB integral by contour ℒ ( ℒ-∞∨ℒ+∞∨ {γ-∞,γ+∞} )
Conversion of Slater’s MB integral by contour ℒ ( ∨∨ )
ℒ
-∞
ℒ
+∞
{γ-∞,γ+∞}
Small addition in lecture
Small addition in lecture
Cite this as: Oleg Marichev, "Everything to Know about Mellin-Barnes Integrals - Part I" from the Notebook Archive (2023), https://notebookarchive.org/2023-02-7gi74jc
Download