Calculation of the ground state energy of single excitons in nanoplatelets including 3D spatial confinement, quantum-well dielectric confinement, short range polaronic effects and 2D electronic correlation variationally
Author
Jose L. Movilla, Josep Planelles, Juan I. Climente
Title
Calculation of the ground state energy of single excitons in nanoplatelets including 3D spatial confinement, quantum-well dielectric confinement, short range polaronic effects and 2D electronic correlation variationally
Description
Extension of the effective mass theory description of band edge excitons in quasi-2D systems for the case of hybrid metal halide perovskites.
Category
Academic Articles & Supplements
Keywords
ground state energy, single excitons, nanoplatelets
URL
http://www.notebookarchive.org/2023-10-2sg7f07/
DOI
https://notebookarchive.org/2023-10-2sg7f07
Date Added
2023-10-06
Date Last Modified
2023-10-06
File Size
223.69 kilobytes
Supplements
Rights
CC BY 4.0
Download
Open in Wolfram Cloud
This file contains supplementary material for J. L. Movilla, J. Planelles and J. I. Climente, “Excitons in metal halide perovskite nanoplatelets: an effective mass description of polaronic, dielectric and quantum confinement effects,” Nanoscale Advances, 2023, 5, 6093, DOI: https://doi.org/10.1039/D3NA00592E
Calculation of the ground state energy of single excitons in nanoplatelets including 3D spatial confinement, quantum-well dielectric confinement, short range polaronic effects and 2D electronic correlation variationally
Calculation of the ground state energy of single excitons in nanoplatelets including 3D spatial confinement, quantum-well dielectric confinement, short range polaronic effects and 2D electronic correlation variationally
Jose L. Movilla (a), Josep Planelles (b), Juan I. Climente (b)
(a) Dept. d’Educació i Didàctiques Específiques, Universitat Jaume I, 12080, Castelló, Spain
(b) Dept. de Química Física i Analítica, Universitat Jaume I, 12080, Castelló, Spain
(b) Dept. de Química Física i Analítica, Universitat Jaume I, 12080, Castelló, Spain
This code implements a model which extends the effective mass theory description of excitons in quasi-2D systems for the case of hybrid metal halide perovskites. This is done by considering not only quantum and dielectric confinement, but also short- and long-range polaron screening –through the inclusion of Haken-like potentials–. The technical novelty lies in the conjugation of dielectric confinement and short range polaronic effects. Both are conveniently expressed using the image charge method for quantum well-like structures, which we adapt here to account for the Yukawa (non-Coulomb) term included in the Haken and Bajaj potentials.
This code implements a model which extends the effective mass theory description of excitons in quasi-2D systems for the case of hybrid metal halide perovskites. This is done by considering not only quantum and dielectric confinement, but also short- and long-range polaron screening –through the inclusion of Haken-like potentials–. The technical novelty lies in the conjugation of dielectric confinement and short range polaronic effects. Both are conveniently expressed using the image charge method for quantum well-like structures, which we adapt here to account for the Yukawa (non-Coulomb) term included in the Haken and Bajaj potentials.
Written with Mathematica 8.0
Written with Mathematica 8.0
Written with Mathematica 8.0
(*Clearmemory*)ClearAll["Global`*"](*ParametersconvertingfromeVandlengthinputunitstoatomicunits*)elv=27.211385;ban=RootApproximant[5.29177249,2];(*Writingbanascombinationofintegersallowsanalyticalintegrationbelow*)(*=====================*)(*INPUTPARAMETERS*)(*=====================*)(*NPLdimensions-inunitsofAngs*10-;useintegernumbers*)Lx=3000;Ly=3000;Lz=126;(*here(30x30x1.26)nm(thicknessequalto2layersofMAPbI3)*)(*=====================*)(*Inner(1)andouter(2)staticdielectricconstants*)eps1=22;eps2=2;(*Inneropticaldielectricconstant*)eps1∞=5.6;(*======================*)(*Effectivemasses[timesm0]*)mep=0.19;mez=0.19;mhp=0.22;mhz=0.22;(*ISOTROPICMASSESareconsidered*)(*======================*)(*Opticalphononenergy(eV)*)ELO=16.5*10^-3;(*======================*)(*OPTIONS*)diel=1;(*Options:diel=1takesintoaccountdielectricconfinement.Otherwise,onlydirecttermsarecosidered*)Yukawa=1;(*Options:Yukawa=1includesYukawatermsinthehamiltonian.Otherwise,Yukawatermsareignored*)Vtype="Haken";(*Options:Vtype="Haken"orVtype="Bajaj"*)(*======================*)(*Variationalparameterrange*)(*3scansareperformed:Afirstonewithastepwidth=αstep,andtworefinations,withαstep1andαstep2*)αmin=0.5;αmax=5;αstep=0.3;αstep1=0.1;αstep2=0.02;(*======================*)(*CutoffsinthecalculationofCoulombandYukawaintegrals*)nC=10;nY=10;(*=======================*)(*ENDOFINPUTPARAMETERS*)(*=======================*)(*Internaldefinitionsandunitconversion*)If[Yukawa==1,Yukawa="ON",Yukawa="OFF"];Lx=Lx/ban;Ly=Ly/ban;Lz=Lz/ban;kx=Pi/Lx;ky=Pi/Ly;kz=Pi/Lz;mup=mep*mhp/(mep+mhp);muz=mez*mhz/(mez+mhz);(*reducedmasses*)ELO=ELO/elv;(*Calculateelectronandholepolaronradii*)le=Sqrt[1/(2*me*ELO)]/.me->mez;lh=Sqrt[1/(2*mh*ELO)]/.mh->mhz;(*Definepseudo-dielectricconstantsforYukawa-typepotentials*)eQW=Which[Vtype=="Haken",eps1*eps1∞/(eps1-eps1∞),Vtype=="Bajaj",(eps1∞/eps1)^(-3/5)*eps1*eps1∞/(eps1-eps1∞),True,Print["Warning: Vtype must be 'Haken' or 'Bajaj'"]];eout=eps2;(*======================*)
(*Calculations*)(*ExpandtheYukawaexponentialintermsof(5)Gaussianfunctions*)fYp[rp_]=Exp[-rp];(*Hererpisinunitsofthepolaronradiuslp(i.e.,rp=r/lp).Otherwise,thefittingdoesnotconvergeefficiently.*)m=1;sto={};n=1000;rf=10;For[i=0,i<=n,i++,rr=i*rf/n;sto=AppendTo[sto,{rr,fYp[rr]}]];sol=FindFit[sto,a1*Exp[-b1*rp^2]+a2*Exp[-b2*rp^2]+a3*Exp[-b3*rp^2]+a4*Exp[-b4*rp^2]+a5*Exp[-b5*rp^2],{a1,a2,a3,a4,a5,{b1,1},{b2,2},{b3,5},{b4,2},{b5,7}},rp];alist={a1,a2,a3,a4,a5}/.sol;blist={b1,b2,b3,b4,b5}/.sol;bliste=blist/le^2;blisth=blist/lh^2;(*========================*)(*COULOMBSelf-energy-sameforelectronorhole-seeTakagaharaPRB40,12359,atomicunits*)Ifdiel==1,q[n_]:=((eps1-eps2)/(eps1+eps2))^Abs[n];term[n_,z_]:=If[n==0,0,q[n]/(2*eps1*Sqrt[(z-z*(-1)^n-n*Pi)^2])];nt=50;(*numberoftermsintheself-energypotentialexpansion*)Pself[z_]=term[n,z];delta=10^-12;self=NIntegrate[Cos[z]^2Pself[z],{z,-Pi/2+delta,Pi/2-delta}];pot=self(Lz/2);,pot=0;;(*========================*)(*YUKAWAelectronandholeself-energies,atomicunits*)Ifdiel==1&&Yukawa=="ON",q[n_]:=((eQW-eout)/(eQW+eout))^Abs[n];term[n_,z_,lp_]:=If[n==0,0,q[n]*Exp[-(1/(kz*lp))*Sqrt[(z-z*(-1)^n-n*Pi)^2]]/(2*eQW*Sqrt[(z-z*(-1)^n-n*Pi)^2])];nt=50;(*numberoftermsintheself-energypotentialexpansion*)Pself[z_]=term[n,z,le];delta=10^-12;self=NIntegrate[Cos[z]^2Pself[z],{z,-Pi/2+delta,Pi/2-delta}];potYe=self(Lz/2);Pself[z_]=term[n,z,lh];delta=10^-12;self=NIntegrate[Cos[z]^2Pself[z],{z,-Pi/2+delta,Pi/2-delta}];potYh=self(Lz/2);,potYe=0;potYh=0;;
nt
∑
n=-nt
nt
∑
n=-nt
nt
∑
n=-nt
Cite this as: Jose L. Movilla, Josep Planelles, Juan I. Climente, "Calculation of the ground state energy of single excitons in nanoplatelets including 3D spatial confinement, quantum-well dielectric confinement, short range polaronic effects and 2D electronic correlation variationally" from the Notebook Archive (2023), https://notebookarchive.org/2023-10-2sg7f07
Download