Ancillary Computations for "Flux Quantization on 11d Superspace"
Author
Urs Schreiber, Hisham Sati, Grigorios Giotopoulos
Title
Ancillary Computations for "Flux Quantization on 11d Superspace"
Description
Clifford algebra checks for establishing 11d supergravity on superspace
Category
Academic Articles & Supplements
Keywords
supergravity, superspace, Bianchi identities, Clifford algebra
URL
http://www.notebookarchive.org/2024-06-1uize3c/
DOI
https://notebookarchive.org/2024-06-1uize3c
Date Added
2024-06-04
Date Last Modified
2024-06-04
File Size
300.63 kilobytes
Supplements
Rights
CC0 1.0
Download
Open in Wolfram Cloud
(*###############################################################*)(*###Ancillarycomputationsfor:####*)(*###"Flux Quantization on 11d Superspace"####*)(*##-componentofthegravitinoBianchisatisfied,theremaining-and-componentsofthegravitinoBianchifollow.Thecheckofthe-componenttakestwoordersofmagnitudemorecomputingtimethanallothercheckscombined.*)
ncatlab.org/schreiber/show/Flux+Quantization+on+11d+Superspace
##*)(*###############################################################*)(*Here:Verificationthat,assumingflux-andtorsion-Bianchis,thegravitinoBianchiisequivalenttotheRarita-Schwingerequation,whichinturnimpliestheEinsteinequation.*)(*Withattentiontotheconversedirectionthathasbeenrarelyorneverbeendiscussedintheliterature:Namelyproofthatwiththeflux-andtorsion-Bianchisandthe()
2
ψ
()
0
ψ
()
3
ψ
()
0
ψ
Urs Schreiber, Hisham Sati and Grigorios Giotopoulos
In[]:=
GAMMA Version 2.0β
9 December 2014
© Ulf Gran, 2001
Remark.Thecommandbyassumingtheirreducibilitycondition⋯0.Inthefollowing,firstthe-componentofthegravitinoBianchiisseentoimplythisconditionforthecomponentofthegravitinofieldstrength;whichisthenused,viaGammaExtract,toshowthatthissame-componentimpliesnofurtherconditiononbeyonditsRarita-Schwingerequationofmotion.Afterwards,theirreducibilityconditionsatisfiedbytheirrepsisused,viaGammaExtract,toshowthatthe-and-componentofthegravitinoBianchiidentityisidenticallysatisfied.(Allthisassumingthattheflux-andthetorsionBianchiidentitieshavealreadybeensolved.)
GammaExtract
providedbyGamma.msimplifiestensor-spinorexpressionsoftheformΓ⋯Γ Ξ
a
1
Γ
Ξ
a
1
a
2
a
p
2
ψ
ρ
a
1
a
2
2
ψ
ρ
a
1
a
2
(N)
Ξ
0
ψ
3
ψ
(*--equation(131),forlateruse--*)H[a_]:=((1/6)*(1/3!)*Tensor[G4,{a,z1,z2,z3}]**GammaProd[{z1,z2,z3}]-(1/12)*(1/4!)*Tensor[G4,{z1,z2,z3,z4}]**GammaProd[{a,z1,z2,z3,z4}])
(*---ChecksforLemma3.2---*)(*--equation(141)--*)
In[]:=
Simplify[-(2/6)*(1/5!)*(1/3!)*3!*Binomial[5,3]*Binomial[3,3]+(2/12)*(1/5!)*(1/4!)*4!*Binomial[5,4]*Binomial[4,4]+(1/2)*(1/4!)]
Out[]=
0
Simplify[-(2/6)*(1/5!)*(1/3!)*1*Binomial[5,1]*Binomial[3,1]+(2/12)*(1/5!)*(1/4!)*2*Binomial[5,2]*Binomial[4,2]]
Out[]=
0
(*---ChecksforLemma3.5---*)
(*--checking⋯⋯ 84 ⋯inequation(144)--*)Simplify[GammaExtract[GammaContract[GammaExpand[GammaProd[{a1,a2,a3,a4,a5,a6,a7,b1,b2,b3,b4},{b1,b2}]**TensorSpinor[rho,{b3,b4}]-84*ASym[GammaProd[{a1,a2,a3,a4,a5}]**TensorSpinor[rho,{a6,a7}],{a1,a2,a3,a4,a5,a6,a7}]]]]]
ϵ
a
1
a
7
b
1
b
4
b
1
b
2
Γ
b
3
b
4
ρ
Γ
a
1
a
5
ρ
a
6
a
7
Out[]=
0
(*------------ChecksforLemma3.6---------------*)
(*---(151)--checking⋯ 845 ---*)Simplify[RenameDummy[GammaExtract[GammaContract[GammaExpand[GammaProd[{a1,a2,a3,a4}]**ASym[GammaProd[{a1,a2}]**Tensor[D,{a3}]**TensorSpinor[rho,{a4,a5}],{a1,a2,a3,a4,a5}]]]]]]-(*---(152)--checking+3+(1/5)- 0---*)Simplify[RenameDummy[GammaExtract[GammaContract[GammaExpand[GammaContract[GammaExpand[GammaProd[{b1,b2}]**ASym[GammaProd[{b1,b2}]**Tensor[D,{a1}]*TensorSpinor[rho,{a2,a3}],{b1,b2,a1,a2,a3}]+3*ASym[Tensor[D,{a1}]*TensorSpinor[rho,{a2,a3}],{a1,a2,a3}]+(1/5)*ASym[GammaProd[{a1,a2}]**Tensor[D,{b}]*TensorSpinor[rho,{b,a3}],{a1,a2,a3}]-ASym[GammaProd[{b,a1}]**Tensor[D,{b}]*TensorSpinor[rho,{a2,a3}],{a1,a2,a3}]]]]]]]]0
a
1
a
4
Γ
Γ
a
1
a
2
∇
a
3
ρ
a
4
a
5
∇
b
b
ρ
a
5
84
5
D
d0
rho
a5d0
b
1
b
2
Γ
Γ
b
1
b
2
∇
a
1
ρ
a
2
a
3
∇
a
1
ρ
a
2
a
3
Γ
a
1
a
2
∇
b
b
ρ
a
3
Γ
b
a
1
b
∇
ρ
a
2
a
3
(*------------ChecksforLemma3.7--------------*)(*+++The-componentofthegravitinoBianchi+++++*)(*---------Thecoefficientof------------*)SimplifyRenameDummyGammaContractGammaExpandGammaContractGammaExpandGammaContractGammaExpand(**)32*TensorSpinor[rho,{c,a}]+(**)(-1/3)*GammaProd[{b1,b2,b3},{c}]**ASym[GammaProd[{a,b1}]**TensorSpinor[rho,{b2,b3}],{a,b1,b2,b3}]+(**)(+1/24)*GammaProd[{a,b1,b2,b3,b4},{c},{b1,b2}]**TensorSpinor[rho,{b3,b4}]+(**)(-1/4)*GammaProd[{b1,b2},{c},{b1}]**TensorSpinor[rho,{b2,a}]+(+1/4)*GammaProd[{b1,b2},{c},{a}]**TensorSpinor[rho,{b1,b2}]+(-1/4)*GammaProd[{b1,b2},{c},{b2}]**TensorSpinor[rho,{a,b1}]
Out[]=
1
12
Γ
ad0
rho
cd0
Γ
cd0
rho
ad0
a
δ
c
Γ
d0d1
rho
d0d1
Γ
acd0d1
rho
d0d1
rho
ac
(*---(163)--itscontractionsimplythegravitinoequationandirreducibility:---*)Simplify[RenameDummy[GammaContract[GammaExpand[GammaContract[GammaExpand[GammaProd[{c}]**%]]]]]]Simplify[RenameDummy[GammaContract[GammaExpand[GammaContract[GammaExpand[GammaProd[{a}]**%%]]]]]]
Out[]=
-**-**
261
2
Γ
d0
rho
ad0
31
12
Γ
ad0d1
rho
d0d1
Out[]=
43
2
Γ
d0
rho
cd0
53
12
Γ
cd0d1
rho
d0d1
(*--(165)--conversely,irreducibilityimpliesthiscomponentoftheBianchi:---*)GammaExtract[%%%]
Out[]=
0
(*-------Thecoefficientof-------*)SimplifyRenameDummyGammaContractGammaExpandGammaContractGammaExpandGammaContractGammaExpand(**)(-1/3)*GammaProd[{b1,b2,b3},{c1,c2}]**ASym[GammaProd[{a,b1}]**TensorSpinor[rho,{b2,b3}],{a,b1,b2,b3}]+(**)(+1/24)*GammaProd[{a,b1,b2,b3,b4},{c1,c2},{b1,b2}]**TensorSpinor[rho,{b3,b4}]+(**)(-1/4)*GammaProd[{b1,b2},{c1,c2},{b1}]**TensorSpinor[rho,{b2,a}]+(+1/4)*GammaProd[{b1,b2},{c1,c2},{a}]**TensorSpinor[rho,{b1,b2}]+(-1/4)*GammaProd[{b1,b2},{c1,c2},{b2}]**TensorSpinor[rho,{a,b1}]
Out[]=
1
12
Γ
a
rho
c1c2
Γ
c1
rho
ac2
Γ
c2
rho
ac1
a
δ
c2
Γ
d0
rho
c1d0
a
δ
c1
Γ
d0
rho
c2d0
Γ
ac1d0
rho
c2d0
Γ
ac2d0
rho
c1d0
Γ
c1c2d0
rho
ad0
a
δ
c2
Γ
c1d0d1
rho
d0d1
a
δ
c1
Γ
c2d0d1
rho
d0d1
Γ
ac1c2d0d1
rho
d0d1
(*--(165)--irreducibilityimpliesthiscomponentoftheBianchi:---*)GammaExtract[%]
Out[]=
0
(*---Thecoefficientof---*)SimplifyRenameDummyGammaContractGammaExpandGammaContractGammaExpandGammaContractGammaExpand(**)(-1/3)*GammaProd[{b1,b2,b3},{c1,c2,c3,c4,c5}]**ASym[GammaProd[{a,b1}]**TensorSpinor[rho,{b2,b3}],{a,b1,b2,b3}]+(**)(+1/24)*GammaProd[{a,b1,b2,b3,b4},{c1,c2,c3,c4,c5},{b1,b2}]**TensorSpinor[rho,{b3,b4}]+(**)(-1/4)*GammaProd[{b1,b2},{c1,c2,c3,c4,c5},{b1}]**TensorSpinor[rho,{b2,a}]+(+1/4)*GammaProd[{b1,b2},{c1,c2,c3,c4,c5},{a}]**TensorSpinor[rho,{b1,b2}]+(-1/4)*GammaProd[{b1,b2},{c1,c2,c3,c4,c5},{b2}]**TensorSpinor[rho,{a,b1}]
Out[]=
In[]:=
(*--nudgeMathematicatodiscardthetermsproportionalto---*)ASym[%,{c1,c2,c3,c4,c5}]
Out[]=
(*--(165)---irreducibilityimpliesthiscomponentoftheBianchi---*)GammaExtract[%]
Out[]=
0
(*+++Checkingthe-componentoftheGravitinoBianchi+++*)(*--p.49--*)
In[]:=
(*---thetermproportionalto---*)GammaContract[GammaExpand[(-1/6)*(1/3!)*(1/11)*ASym[GammaProd[{a1,a2,a3},{a4}],{a1,a2,a3,a4}]**TensorSpinor[Xi,{}]+(-1/12)*(1/4!)*(1/11)*GammaProd[{b,a1,a2,a3,a4},{b}]**TensorSpinor[Xi,{}]+(1/(4*6))*(1/11)ASym[GammaProd[{a1,a2},{a3,a4}],{a1,a2,a3,a4}]**TensorSpinor[Xi,{}]+(1/(4*6))*(1/24)*(-1/77)*(1/5!)*GammaProd[{b1,b2},{b1,b2,a1,a2,a3,a4,c1,c2,c3,c4,c5},(*theLCsymbol*){c1,c2,c3,c4,c5}]**TensorSpinor[Xi,{}]]]
Out[]=
-+-
1
396
a1a2
δ
a3a4
Xi
1
396
a1a3
δ
a2a4
Xi
1
396
a1a4
δ
a2a3
Xi
In[]:=
(*--makethesystemrecalltheskew-symmetry--*)ASym[%,{a1,a2,a3,a4}]
Out[]=
0
In[]:=
(*---thetermproportionalto---*)GammaExtract[GammaContract[GammaExpand[(-1/6)*(1/3!)*ASym[GammaProd[{a1,a2,a3}]**TensorSpinor[Xi,{a4}],{a1,a2,a3,a4}]+(-1/12)*(1/4!)*GammaProd[{b,a1,a2,a3,a4}]**TensorSpinor[Xi,{b}]+(1/(4*6))*(-2/9)*ASym[GammaProd[{a1,a2}]**ASym[GammaProd[{a3}]**TensorSpinor[Xi,{a4}],{a3,a4}],{a1,a2,a3,a4}]+(1/(4*6))*(1/24)*(5/9)*(1/5!)*GammaProd[{b1,b2},{b1,b2,a1,a2,a3,a4,c1,c2,c3,c4,c5}(*LCsymbol*)]**ASym[GammaProd[{c1,c2,c3,c4}]**TensorSpinor[Xi,{c5}],{c1,c2,c3,c4,c5}]]]]
Out[]=
0
In[]:=
(*---thetermproportionalto---*)GammaExtract[GammaExpand[GammaExtract[GammaExpand[(1/(4*6))*ASym[GammaProd[{a1,a2}]**TensorSpinor[Xi,{a3,a4}],{a1,a2,a3,a4}]+(1/(4*6))*(1/24)*2*(1/5!)*GammaProd[{b1,b2},{b1,b2,a1,a2,a3,a4,c1,c2,c3,c4,c5},(*theLCsymbol*){c1,c2,c3}]**TensorSpinor[Xi,{c4,c5}]]]]]
Out[]=
0
In[]:=
(*---thetermproportionalto---*)GammaExtract[GammaExpand[(1/(4*6))*(1/24)*(1/5!)GammaProd[{b1,b2},{b1,b2,a1,a2,a3,a4,c1,c2,c3,c4,c5}(*theLCsymbol*)]**TensorSpinor[Xi,{c1,c2,c3,c4,c5}]]]
Out[]=
0
(*---Checkingthe-componentoftheGravitinoBianchi---*)(*--firsttostatethecovariantderivativeofinstages--*)(*--usingLemma3.6--*)(*--(132)--*)H[a_]:=((1/6)*(1/3!)*Tensor[G4,{a,z1,z2,z3}]**GammaProd[{z1,z2,z3}]-(1/12)*(1/4!)*Tensor[G4,{z1,z2,z3,z4}]**GammaProd[{a,z1,z2,z3,z4}])(*--(153)--*)barH[a_]:=((1/6)*(1/3!)*Tensor[G4,{a,z1,z2,z3}]**GammaProd[{z1,z2,z3}]+(1/12)*(1/4!)*Tensor[G4,{z1,z2,z3,z4}]**GammaProd[{a,z1,z2,z3,z4}])(*--(148)--*)FiveIndexDerivative[a1_,a2_,a3_,a4_,a5_]:=(Simplify[GammaExtract[GammaContract[GammaExpand[ASym[barH[a1]**GammaProd[{a2,a3}]**TensorSpinor[rho,{a4,a5}],{a1,a2,a3,a4,a5}]-(1/3)*ASym[Tensor[G4,{y,a1,a2,a3}]*GammaProd[{y}]**TensorSpinor[rho,{a4,a5}],{a1,a2,a3,a4,a5}]]]]])(*--(149)--*)DivergenceOfRho[a_]:=(Simplify[GammaExtract[GammaContract[GammaExpand[(5/84)*GammaProd[{x1,x2,x3,x4}]**FiveIndexDerivative[x1,x2,x3,x4,a]]]]])(*--(150)--*)ThreeIndexDerivative[c1_,c2_,c3_]:=(Simplify[GammaExtract[GammaContract[GammaExpand[GammaContract[GammaExpand[-ASym[GammaProd[{c1,c2}]**DivergenceOfRho[c3],{c1,c2,c3}]+2*barH[w]**ASym[GammaProd[{w,c1}]**TensorSpinor[rho,{c2,c3}],{w,c1,c2,c3}]+(2*5!*84/(7!*4!))*GammaProd[{c1,c2,c3,w1,w2,w3,w4,w5,w6,w7,w8}]**((12/(4!*4!))*Tensor[G4,{w1,w2,w3,w4}]*GammaProd[{w5,w6}]**TensorSpinor[rho,{w7,w8}]-(1/6!)*(1/4!)*Tensor[G4,{v1,v2,v3,v4}]*GammaProd[{u,w1,w2,w3,w4,w5,w6,v1,v2,v3,v4}]**GammaProd[{u}]**TensorSpinor[rho,{w7,w8}])]]]]]])(*--(147)--*)ExteriorDerivativeOfRho[a1_,a2_,a3_]:=((1/3)*ThreeIndexDerivative[a1,a2,a3]-(1/15)*ASym[GammaProd[{a1,a2}]**DivergenceOfRho[a3],{a1,a2,a3}]-(1/3)*GammaProd[{s1,s2}]**FiveIndexDerivative[s1,s2,a1,a2,a3])(*---nowwiththesedefinitions,theactualcheckmentionedonp.49--*)SimplifyRenameDummyGammaExtractGammaContractGammaExpandGammaContractGammaExpand(*--The-componentofthegravitinoBianchi--*)ExteriorDerivativeOfRho[a1,a2,a3]+ASym[H[a1]**TensorSpinor[rho,{a2,a3}],{a1,a2,a3}](*----*)
Out[]=
0
(*---ChecksforLemma3.8---*)(*---DerivingtheEinsteinequationfromthegravitinoequation---*)
In[]:=
(*--expandingthe-term(B)--*)Simplify[RenameDummy[GammaContract[GammaExpand[GammaContract[GammaExpand[GammaProd[{a,b1,b2}]**((1/6)*(1/3!)*Tensor[G4,{b1,c1,c2,c3}]**GammaProd[{c1,c2,c3}]-(1/12)*(1/4!)*Tensor[G4,{c1,c2,c3,c4}]**GammaProd[{b1,c1,c2,c3,c4}])**((1/6)*(1/3!)*Tensor[G4,{b2,d1,d2,d3}]**GammaProd[{d1,d2,d3}]-(1/12)*(1/4!)*Tensor[G4,{d1,d2,d3,d4}]**GammaProd[{b2,d1,d2,d3,d4}])]]]]]-(-1/24)(GammaProd[{d0}]*Tensor[G4,{a,d1,d2,d3}]*Tensor[G4,{d0,d1,d2,d3}]-(1/8)GammaProd[{a}]*Tensor[G4,{d0,d1,d2,d3}]^2)]
Out[]=
1
4608
Γ
ad0d1
G4
d0d2d3d4
G4
d1d2d3d4
Γ
ad0d1d2d3d4d5
G4
d0d1d2d6
G4
d3d4d5d6
Γ
ad0d1d2d3d4d5d6d7
G4
d0d1d2d3
G4
d4d5d6d7
(*--no1-indexGamma-termleft:--*)
In[]:=
%/.{GammaProd[{a1_,a2_,a3_}]->0,GammaProd[{a1_,a2_,a3_,a4_,a5_,a6_,a7_}]->0,GammaProd[{a1_,a2_,a3_,a4_,a5_,a6_,a7_,a8_,a9_}]->0}
Out[]=
0
Cite this as: Urs Schreiber, Hisham Sati, Grigorios Giotopoulos, "Ancillary Computations for "Flux Quantization on 11d Superspace"" from the Notebook Archive (2024), https://notebookarchive.org/2024-06-1uize3c
Download